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ABASTRACT 

With explosive growth of Internet, more and more 
companies are in need of powerful web servers to support 
e-commerce and other business activities. To meet this 
need, cluster architecture has emerged to be the most 
popular choice for high performance web servers. As one 
of the most important key technologies, content aware 
scheduling is becoming a hot research topic. Content-aware 
scheduling systems have many advantages over other 
solutions. 

In this paper, we design and implement a scheduling 
system with content awareness for cluster web servers. This 
system is implemented in Linux kernel. This system is 
composed of two main modules: the network dispatcher 
module and the node server module. We also extend this 
system to support all web services based on TCP, such as 
support IIOP (Internet Inter-ORB Protocol) and high 
performance cluster cache server. 

The performance of this system is benchmarked with 
Webbench and httperf. According to the testing results, this 
system shows good scalability and low response latency. 
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INTRODUCTION 

A single node or single SMP server hosting a service is no 
longer sufficient to meet the needs and challenges of 
companies in the Internet era that require powerful web 
servers to support e-commerce and other business activities. 
Cluster-based server has been proven to be an efficient and 
cost effective alternative to build a scalable, reliable, and 
high-performance Internet server system. In fact, popular 
web sites increasingly run Internet services on a cluster of  
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servers (e.g. Alta vista, Netscape, Google), and this trend is 
likely to accelerate. 

As one of the most important technologies in web cluster, 
Content Aware Scheduling System (CASS) is becoming a 
hot research topic. Content aware scheduling system has 
many advantages over other solutions: (1) increased 
performance due to improved hit rates in the node server�s 
main memory caches, (2) increased secondary storage 
scalability due to the ability to partition the server�s 
database over the different node servers, and (3) the ability 
to employ node servers specialized for certain types of 
requests (e.g., audio and video). 

Currently, CASS is often implemented with the help of 
application level programs, such as Apache. For example, 
Rice University has implemented CASS in kernel level in 
FreeBSD platform [12], while Harvard University 
conducted CASS research in the Windows NT platform 
[14]. The research focus of Rice University is scheduling 
policies, such as LARD (Locality Aware Request 
Distribution). Due to the flexibility and popularity of Linux, 
we implement our content aware scheduling system in 
Linux. By using a LARD-like scheduling policy, we focus 
on the content aware scheduling architecture in Linux. 

In this paper, we present the main design and 
implementation issues of this system, including a new, 
efficient technology used to deliver information with an 
existing packet in the kernel of Linux. This technology 
avoids creating a new sk_buff structure to relay necessary 
information from the dispatcher to a selected node server. 
In addition, this system can also support other TCP-based 
network services. More specifically, the support package 
for IIOP, implemented in this system, demonstrates the 
system ability to support other network services. The 
system also facilitates the construction of cluster cache 
servers. 

The rest of this paper is organized as follows. We discuss 
related work in the next section. Section 3 outlines the 
design principles of the proposed system. Section 4 
describes the overall design of this system and presents the 



rationale for some design choices. The application of this 
system is discussed in section 5. Section 6 presents 
performance evaluation of the system in a web cluster 
environment. Finally, section 8 concludes the paper with 
remarks on current and future work. 

RELATED WORKS 

For cluster computing, the network dispatching technology 
for clients requests is an important issue. This research 
issue ranges from the dispatching of common parallel jobs 
to that of special services such as web services. One of the 
first techniques emerged is based on the dynamic 
forwarding according to Domain Name System (DNS) [10, 
11]. It is argued that a smart client can gain more 
advantages by allowing the clients to perform load 
balancing [2]. Other research projects that implemented 
dispatching in the user space include a network router 
solution [4], Reverse-proxy [9], SWEB [5] and H-SWEB 
[3]. These schemes in general require more system 
resources than kernel level solution. Till now, the most 
common network service dispatching is based on IP level 
forwarding [1, 8, 13]. 

For content aware scheduling, Pai [12] explored the use of 
content-based request distribution in a cluster web server 
environment. This work presented an instance of a content-
aware request distribution strategy, called LARD (Locality 
Aware Request Distribution). The strategy achieved both 
locality, in order to increase hit rates in the web servers 
memory caches, and load balancing. Performance results of 
the LARD algorithm showed substantial performance gains 
over WRR (Weighted Round � Robin). 

Zhang [14] explored another content-based request 
distribution algorithm that looked at static and dynamic 
content and focused on cache affinity. They conformed the 
results of Pai by showing that focusing on locality can lead 
to significant improvements in cluster throughput. 

More recently, Mohit Aron [7] presented a new, scalable 
architecture for content-aware request distribution in web 
server clusters. Besides supporting content aware 
scheduling policy, their cluster architecture improved 
server performance by allowing partitioned secondary 
storage, specialized server nodes, and request distribution 
strategies that optimize for locality. 
DESIGN PRINCIPLES 

In this section, we examine some technical issues that we 
encountered while designing the prototype system. The first 
issue concerns with the three-way handshake process to 
establish a TCP connection. The second one is about packet 
relaying. The third issue deals with a new efficient 
technology we developed to deliver information with an 
existing packet in Linux kernel. The last issue is about the 
mechanism of generality of content aware scheduling 
system. 

Figure 1 shows the sequence of events in the connection  

Figure 1   Event Sequence in the Connection Phase of 
an HTTP Transaction 

establishment phase of an HTTP transaction. When starting, 
a web server process listens for connection requests on a 
socket bound to a well known port � typically port 80. 
When a connection establishment request (TCP SYN 
packet) from a client is received on this socket (Figure 1, 
position 1), the server TCP responses with a SYN-ACK 
TCP packet, creates a socket for the new, incomplete 
connection, and places it in the listen socket�s SYN-RECV 
queue. Later, when the client responds with an ACK packet 
to the server�s SYN-ACK packet (position 2), the server 
TCP removes the socket created above from the SYN-
RECV queue and places it in the listen socket�s queue of 
connections awaiting acceptance (accept queue). Each time 
the web server process executes the accept() system call 
(position 3), the first socket in the accept queue of the listen 
socket is removed and returned. After accepting a 
connection, the web server - either directly or indirectly - 
reads the HTTP request from the client, sends back an 
appropriate response, and closes the connection. 

Before receiving the actual request, the server must 
establish the TCP connection through three-way handshake 
process with the client. This can cause two main problems 
in the design of content aware scheduling system. The first 
problem is that the server does not know which packet will 
include the client�s request at first, it must rely on the TCP 
states changing rules. To solve this problem, we develop 
the pseudo-server module to listen and intercept the 
coming-back TCP packet between the client and the 



network dispatcher. The pseudo-server�s main advantage 
lies in its avoidance of a lot of single server programs (such 
as Apache Web Server and CORBA server) installed in the 
dispatcher. Installing single server programs has two main 
disadvantages: (1) single server programs consume system 
resources; (2) it prevents the server program from doing 
more important jobs, such as configuring Apache for 
monitor and remote-configuration. 

The second problem has to do with how the client�s request 
is relayed to the selected node server. Because the node 
server has not established the TCP connection through 
three-way handshake process, the node server�s TCP/IP 
stack won�t accept the relayed client�s request without any 
more processing. A common solution is to establish a new 
socket between the network dispatcher and the selected 
node server. But this solution will incur more system cost. 
In this paper, we use the faking three-way handshake trick 
to reduce system cost. 

The third issue concerns with the information delivery 
mechanism in Linux kernel. In order to fake the three-way 
handshake process, the node server requires the necessary 
three-way handshake information to finish this faking 
process. A method often used is to create a new network 
packet for one or more information packets needed to 
deliver. This method will cause other system expenses and 
need the matching operations in the node server side. To 
avoid these drawbacks, we develop a new, efficient 
technique to deliver the information with an existing packet 
in Linux kernel. The salient feature of this mechanism is 
that it can prevent allocating new memory space and reduce 
system cost. The basic principle of this mechanism is that 
the sk_buff structure in Linux is not used entirely, thus 
allowing the unused memory space in the sk_buff structure 
to be used to deliver the handshake information. Two 
schemes are implemented to handle the case when the 
unused memory space is insufficient to contain the 
handshake information. 

For generality, we design two modules: the pseudo-server 
module and the packet parser module. The pseudo-server 
provides the function of listening on multiple known ports 
at the same time. When a request (HTTP request, for 
example) comes, the pseudo-server will listen on the 
service port before the TCP connection has been 
established. The kernel portion of the pseudo-server will 
keep the selected three-way handshake information in a 
kernel hash table in the handshake process. When the 
pseudo-server notices that the TCP state is ESTABLISHED, 
which indicates that the TCP connection between the client 
and the network dispatcher has been established and the 
next packet will include the request content, the kernel 
portion will stop the listen process of this connection, and 
will clear the related data structures in the kernel.  The 
packet parser module achieves generality by providing a 
common interface for developers to add other packet parser 
for different network services. In our prototype, we provide 
parser modules for HTTP and IIOP, so our Content Aware 

Scheduling System can support both HTTP and IIOP 
services. 

PROTOTYPE IMPLEMENTATATION 

There are three main parts in the proposed content aware 
scheduling system. In this section, we first present the 
design of the dispatcher module, and then discuss the Mix-
LARD scheduling policy. Thirdly, another part of the 
CASS, the design of the node server module will be 
discussed. Last we will describe our implementation of 
configuration and controlling interface for CASS. 

Network Stack of the Network Dispatcher 

CASS is implemented at the IP layer. Network services 
must be configured in advance to inform CASS of the 
incoming packet for this service. When a new packet 
arrives, the packet will first be sent to the CASS for 
processing in IP layer, where the check module of CASS 
will check whether the coming service request has been 
configured. If not, this packet will be sent up to the normal 
TCP/IP stack where it will be processed directly. If this 
network service has been configured, this packet will be 
sent to the CASS for processing. Figure 2 depicts the 
network stack of CASS in the network dispatcher. 

 

Figure 2   Network Stack of the Network Dispatcher 

If the TCP state of this connection has not reached the 
ESTABLISHED state, the incoming packet will be sent up 
to the pseudo-server module for three-way handshake 
processing. If the TCP connection is ESTABLISHED, this 
packet will be delivered to the parser module. Based on 
service types, different parser will be called. The parsers� 
responsibility is to acquire the request�s content. For 
example, if the service is WWW, the request�s content is 
the URL address; if the service is based on IIOP, the 
request�s content is the parameter of service function. After 
the parser module, the packet is delivered to the match 
module which looks up the scheduling table according to 
the request�s content. If the same request�s content is found 
in the scheduling table, implying that the same request has 
been scheduled before and it might still be in he node 
server�s main memory, the request will be forwarded to the 
node server. The timer of CASS is used to delete old items  



Figure 3   LARD Scheduling Policy

from the scheduling table. If a request is scheduled again, 
the timer of the request�s �content hash table column� will 
be refreshed. If a request�s content can�t be found in the 
scheduling table, the schedule will use the schedule policy 
module to decide which node server to choose from. More 
details of the schedule policy will be discussed in second 
subsection. 

After CASS has decided the target node server, the next 
step is to forward the client�s request packet and handshake 
process information to the selected node server. The 
technique to deliver the handshake information along with 
the forwarded request packet, described in Section 3, is 
implemented in the data link layer. With this technique, the 
request packet and the necessary handshake information 
can be delivered together to the selected node server. The 
processing in the node server will be discussed in third 
subsection. 

Mix-LARD Scheduling Policy 

A new, mix scheduling policy called Mix-LARD will be 
discussed in this section. This scheduling policy is based on 
LARD. The basic principle of LARD is illustrated in Figure 
3. In the figure, some web requests are arriving whose 
types are A, B or C, separately. According the allocation 
made a prior, each request will be forwarded to a selected 
node server for this service. For example, when a type A 
request arrives, this request will be forwarded directly to 
the node server designated to handle �A� service request, 
etc. Thus, the services with identical request content can be 
scheduled to the same node server, thereby enhancing the 
main memory cache hit rate at each node server by virtue 
of increased locality. Because the data fetching rate is much 
higher when the data is in the main memory than when the 
data is in hard disk, the cluster performance can be 
enhanced significantly. 

Although LARD scheduling policy has many advantages, it 
has two main disadvantages: 

(1) The allocation must be decided a prior, and the data 
must be allocated to different node servers. Hence, it is 
inflexible, and difficult for the user to configure or 
reconfigure. 

(2) LARD policy can only support static web services, 

unable to support dynamic web requests and other 
protocols.  

Therefore, we presented a hybrid scheduling policy, called 
the Mix-LARD. The first and most important feature of 
Mix-LARD is that it can support both dynamic and static 
web requests at the same time. To do so, a smart unit is 
embedded into the HTTP scheduling module. The smart 
unit is responsible to check the types of clients� requests. If 
a dynamic request is coming, the smart unit will find it and 
say to the scheduler: �Hey, it is dynamic. Use dynamic 
scheduling policy please.� And if a common static HTTP 
request is coming, static scheduling policy will be called. 
This smart unit in CASS is implemented in Linux kernel, 
and its job is just to check some bits for every coming 
packet, so it�s fast. It can work well without impairing the 
system�s performance. 

The second feature is that the scheduling allocation can be 
changed through the refreshing operation with the content 
aware Hash table�s timer. To understand this feather, let�s 
imagine the scheduling allocation table as a cache. By 
invaliding some stale data, we can enhance the hit rate of 
the scheduling allocation table. 

Mix-LARD policy also can support many network 
protocols except HTTP, such as IIOP, etc. We implement 
this feather by providing the common programming 
interface for other possible network services.  
Node Server Processing 

In our content aware scheduling system, the responsibility 
of a node server is to receive the request packet that is 
forwarded by the network dispatcher, restore the forwarded 
request packet and fake the three-way handshake process to 
the user level network service programs like Apache. 
Figure 4 depicts the processing flow in a node server.  

The packet receive module is implemented in the TCP/IP 
stack of a node server in the proposed CASS. This 
module�s function is to receive the forwarded request. If it 
finds a packet that has CASS processing tag, this request 
will be passed to the packet resume module. The packet 
resume module will separate the three-way handshake 
information from the forwarded packet and restore the 
original client request packet. After that, the forwarded 



 
Figure 4   Processing Flow in Node Server 

client request and three-way handshake information will be 
delivered to the module responsible for faking three-way 
handshake. In the faking module, some simulated 
operations will be done to stimulate the state changing of 
the TCP finite state machine. After these operations, the 
web service programs (such as Apache, etc.) will not notice 
that the client hasn�t done three-way handshake process 
with it. It will handle the client�s request and return the 
answer to client directly. 

Configuration and Controlling Interface 

Our CASS has supplied a configuration and controlling 
interface for administrators. To configure or control our 
CASS, an administrator can operate the web sever directly 
or just telnet into the Linux operating system in the web 
server to execute some commands. Some modules in CASS 
are responsible for this.  

DISCUSSION OF CASS APPLICATIONS 

CASS supports many TCP-based network services. In this 
section, we present two examples to show its application. 
The two examples are its support of IIOP (Internet Inter-
ORB Protocol) and of cluster cache server. 

CASS Support of IIOP 

Because IIOP is the communication protocol that is used in 
CORBA program, we implement a simple CORBA 
program to show the support to IIOP. Our implementation 
includes a CORBA client, two CORBA node servers and a 
network dispatcher in which CASS is installed. A CORBA 
service called �echo� is running on each CORBA node 
server. This service�s function is to print �server� in the 
terminal of the node server when it receive the client�s 
request. According to the CORBA white paper, before the 
client sends request to the cluster, it must first get the IOR 
information that indicates necessary CORBA server 
information. When the CORBA client�s request arrives at 
the network dispatcher, CASS will parse the request�s 
content and use the Mix-LARD policy to select a CORBA 
node server. Then the request packet will be forwarded to 
the selected CORBA node server. After the node server 
receives the client request and the three-way handshake 
information, this CORBA node server will print �server� 

information in the terminal of this node server. It is because 
CORBA uses IIOP as its communication protocol that this 
test can show CASS�s support to IIOP. Figure 5 illustrates 
the main idea of this test. 

 

Figure 5   Support of IIOP 

CASS Support of Cluster Cache Server 

Cache server can be a PC plus the cache server software 
(such as Squid, Inktomi, etc), or it can be a special cache 
server like CacheFlow. In contrast to these cache server 
solutions, cluster cache server can use cluster architecture 
to provide support to cache services. Although the service 
type is different, cache server has the same architecture as 
cluster web server: the network dispatcher receives the 
client�s request and forwards it to a selected node server. 
By adopting CASS, cluster cache server can gain the 
advantages of content aware scheduling policy: it can 
deploy different cache materials in different node servers. 
The cache server prototype implemented in this study uses 
the �CASS + Squid Cache server� scheme, and it works 
properly. 

PERFORMANCE EVALUTATION 

In this section, we present performance evaluation results 
obtained with our prototype CASS cluster. While the 
scalability test of the proposed CASS cluster is presented in 
the first subsection, the second subsection provides 
experimental results on the processing response time 
performance. Finally, the third subsection compares the 
performance of our CASS prototype with Linux Virtual 
Server�an example for IP level scheduling system. 

Scalability of CASS 

We use Webbench 4.1 to test the scalability of CASS 
cluster. The test environment includes four clients, one 
controller. The responsibility of clients is to send http 
requests to the cluster web server steadily, and the 
responsibility of controller is to send commands to every 
client to start the test and at the end of the test receives the 
clients test data and computes statistics on them. Webbench 
can test the throughput of the cluster, and our testing result 
is depicted in figure 6. In this test, the number of node 
servers increases from 1 to 6. In this scale, the throughput  
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Figure 6   Scalability of CASS 

of CASS cluster appears to scale almost linearly.  

Processing Delay of CASS 

This sub-section reports the test result on the processing 
delay of CASS. The testing tool used is httperf. The 
baseline delay was established by testing with one server 
with CASS. The processing delay with CASS minus as 
the baseline delay results in the CASS�s delay value. In 
this experiment, the baseline server was found to process 
135.4 connections per second, resulting in a per connection 
processing delay of 1000ms/135.4 = 7.39ms. Similarly, the 
CASS cluster with one server is measured to have a per 
connection processing delay of 1000ms/66.2 = 15.11ms/. 
Thus, the delay caused by CASS is 15.11 � 7.39 = 7.72ms. 
In general, the processing delay in a WAN environment is 
larger than 50ms, so the processing delay of CASS is 
acceptable. This is also true in LAN environment for end 
users. 

Performance Comparison with Linux Virtual Server 

Unlike CASS, Linux Virtual Server uses the IP level 
scheduling policy that select a node server without 
considering the request�s content. As mentioned earlier, 
one of the advantages of CASS is that it can enhance the hit 
rate of node servers� main memory cache by taking 
advantage of locality. This performance advantage of 
CASS, however, comes at the expense of the higher system 
overhead of the network dispatcher compared with the 
Linux Virtual Server because CASS needs to do extra work 
related to request�s content. In this experiment, we assess 
the performance impact of these two factors.Let α denote 
the communication delay of two PC, so the communication 
of the cluster�s �client � network dispatcher � node 
server� architecture will be 2α. The processing delay of 
Linux Virtual  Sever is assumed to be β, the processing 
delay of CASS to beβ�. Suppose that data fetching delay 

from main memory is γ and the data fetching delay form 
hard disk is δ. Finally, the operating system processing 
delay is assumed to beε. 

When the test set is big enough to overflow the one-node 
server�s main memory capacity, data must be fetched from 
the hard disk if Linux Virtual Server is adopted. On the 
other hand, if CASS is used as the dispatching module, data 
can be cached in different node server�s main memory, thus 
avoiding the fetching delay from hard disk. In this case, the 
processing delay of Linux Virtual Server can be expressed 
in equation 1 below: 

)1(      2   Dlvs LLLLLεδβα +++=  
The processing delay of CASS can be expressed in 
equation 2 below: 

)2(  '  2   Dcass LLLLLεγβα +++=  
Equation 1 can be transformed to equation 3 as follows: 

)3()()      (2   Dlvs LLLLLγδεγβα −++++=  

In equation 3, （2α＋β＋γ＋ε）is the processing 
delay of the Linux Virtual Server when it needs not fetch 
data from hard disk directly. So, the quotient of the 
processing delay of the Linux Virtual Server with that of 
CASS can be expressed as equation 4 below: 

)4(
'2

)()2(
D
D    D
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According to the test result in the second subsection, Dcavs 
in equation 4 is 15.11ms. By using the same method, the 
test shows that the processing delay of Linux Virtual Server 
without direct hard disk fetching is 1000ms/115.6 = 



8.65ms/conn. In other words, equation 4 can be 
transformed to equation 5 as follows:  

)5(
11.15

)(65.8    D LLLLL
ms

ms γδ −+=
 

In equation 5, δis the fetching delay when data is fetched 
directly from hard disk. The fetching time from hard disk 
includes three parts: the time it spends to locate the target 
track (i.e., seek time), the time it spends to find the target 
sector (i.e., rotation time) and the time it spends to fetch the 
data (i.e., transfer time). Among these three parts, average 
seek time dominates, so we use the average seek time as its 
fetching delay from hard disk. The hard disk used in our 
testing environment is IBM Deskstar 60GXP. The 
information in IBM�s product homepage shows that the 
average disk seek time is 8.5ms. Also, because the value of 
γ is in the level of nanosecond [6], we can ignore it here. 
In this case, equation 5 can be transformed to equation 6 as 
follows: 

)6(135.1
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Thus, the average processing delay of CASS is 13.5% 
lower than that of Linux Virtual Server because CASS can 
prevent fetching data from hard disk directly. 

CONCLUSION AND FUTURE WORK 

We have presented a Linux content aware scheduling 
system for network services. CASS can increase the node 
servers� main memory cache hit rate and enhance the 
cluster�s performance. It is possible for CASS to support 
other TCP-based network services. 

Our design employs a PC that acts as the central point of 
contact for the server on the Internet, and distributes the 
incoming requests to a number of back-ends. CASS is 
implemented in Linux kernel except for the pseudo-server 
module, whose responsibility is to provide general listening 
function to different network services. The implementation 
at node server side is to receive the forwarded packet from 
network dispatcher and to fake three-way handshake 
process to network service programs. 

In terms of scalability, the proposed design shows almost 
linear scalability with the number of node servers ranging 
from 1 to 6. The processing delay of CASS is low 
compared with the common network delay. We analyzed 
the CASS�s processing delay in comparison with a 
commonly used IP level dispatching technology�Linux 
Virtual Server and the result shows that CASS�s processing 
delay is 13.5% lower than that of the Linux Virtual Server. 

In future study, we will optimize the performance of the 
pseudo-server module and investigate other issues that 
affect the performance of CASS. 
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