
A Content Aware Scheduling System for Network
Services in Linux Clusters1

Yijun Lu, Hai Jin, Hong Jiang* and Zongfen Han

Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China

yijlu@cse.unl.edu {hjin, zfhan}@hust.edu.cn

*University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

jiang@cse.unl.edu

ABASTRACT

With explosive growth of Internet, more and more
companies are in need of powerful web servers to support
e-commerce and other business activities. To meet this
need, cluster architecture has emerged to be the most
popular choice for high performance web servers. As one
of the most important key technologies, content aware
scheduling is becoming a hot research topic. Content-aware
scheduling systems have many advantages over other
solutions.

In this paper, we design and implement a scheduling
system with content awareness for cluster web servers. This
system is implemented in Linux kernel. This system is
composed of two main modules: the network dispatcher
module and the node server module. We also extend this
system to support all web services based on TCP, such as
support IIOP (Internet Inter-ORB Protocol) and high
performance cluster cache server.

The performance of this system is benchmarked with
Webbench and httperf. According to the testing results, this
system shows good scalability and low response latency.

Keywords

Cluster, Scheduling, Content Awareness, Scalability,
Linux, IIOP, Cache Server
INTRODUCTION

A single node or single SMP server hosting a service is no
longer sufficient to meet the needs and challenges of
companies in the Internet era that require powerful web
servers to support e-commerce and other business activities.
Cluster-based server has been proven to be an efficient and
cost effective alternative to build a scalable, reliable, and
high-performance Internet server system. In fact, popular
web sites increasingly run Internet services on a cluster of

1 This paper is supported in part by NSF under grant EPS-
0091900

servers (e.g. Alta vista, Netscape, Google), and this trend is
likely to accelerate.

As one of the most important technologies in web cluster,
Content Aware Scheduling System (CASS) is becoming a
hot research topic. Content aware scheduling system has
many advantages over other solutions: (1) increased
performance due to improved hit rates in the node server�s
main memory caches, (2) increased secondary storage
scalability due to the ability to partition the server�s
database over the different node servers, and (3) the ability
to employ node servers specialized for certain types of
requests (e.g., audio and video).

Currently, CASS is often implemented with the help of
application level programs, such as Apache. For example,
Rice University has implemented CASS in kernel level in
FreeBSD platform [12], while Harvard University
conducted CASS research in the Windows NT platform
[14]. The research focus of Rice University is scheduling
policies, such as LARD (Locality Aware Request
Distribution). Due to the flexibility and popularity of Linux,
we implement our content aware scheduling system in
Linux. By using a LARD-like scheduling policy, we focus
on the content aware scheduling architecture in Linux.

In this paper, we present the main design and
implementation issues of this system, including a new,
efficient technology used to deliver information with an
existing packet in the kernel of Linux. This technology
avoids creating a new sk_buff structure to relay necessary
information from the dispatcher to a selected node server.
In addition, this system can also support other TCP-based
network services. More specifically, the support package
for IIOP, implemented in this system, demonstrates the
system ability to support other network services. The
system also facilitates the construction of cluster cache
servers.

The rest of this paper is organized as follows. We discuss
related work in the next section. Section 3 outlines the
design principles of the proposed system. Section 4
describes the overall design of this system and presents the

rationale for some design choices. The application of this
system is discussed in section 5. Section 6 presents
performance evaluation of the system in a web cluster
environment. Finally, section 8 concludes the paper with
remarks on current and future work.

RELATED WORKS

For cluster computing, the network dispatching technology
for clients requests is an important issue. This research
issue ranges from the dispatching of common parallel jobs
to that of special services such as web services. One of the
first techniques emerged is based on the dynamic
forwarding according to Domain Name System (DNS) [10,
11]. It is argued that a smart client can gain more
advantages by allowing the clients to perform load
balancing [2]. Other research projects that implemented
dispatching in the user space include a network router
solution [4], Reverse-proxy [9], SWEB [5] and H-SWEB
[3]. These schemes in general require more system
resources than kernel level solution. Till now, the most
common network service dispatching is based on IP level
forwarding [1, 8, 13].

For content aware scheduling, Pai [12] explored the use of
content-based request distribution in a cluster web server
environment. This work presented an instance of a content-
aware request distribution strategy, called LARD (Locality
Aware Request Distribution). The strategy achieved both
locality, in order to increase hit rates in the web servers
memory caches, and load balancing. Performance results of
the LARD algorithm showed substantial performance gains
over WRR (Weighted Round � Robin).

Zhang [14] explored another content-based request
distribution algorithm that looked at static and dynamic
content and focused on cache affinity. They conformed the
results of Pai by showing that focusing on locality can lead
to significant improvements in cluster throughput.

More recently, Mohit Aron [7] presented a new, scalable
architecture for content-aware request distribution in web
server clusters. Besides supporting content aware
scheduling policy, their cluster architecture improved
server performance by allowing partitioned secondary
storage, specialized server nodes, and request distribution
strategies that optimize for locality.
DESIGN PRINCIPLES

In this section, we examine some technical issues that we
encountered while designing the prototype system. The first
issue concerns with the three-way handshake process to
establish a TCP connection. The second one is about packet
relaying. The third issue deals with a new efficient
technology we developed to deliver information with an
existing packet in Linux kernel. The last issue is about the
mechanism of generality of content aware scheduling
system.

Figure 1 shows the sequence of events in the connection

Figure 1 Event Sequence in the Connection Phase of
an HTTP Transaction

establishment phase of an HTTP transaction. When starting,
a web server process listens for connection requests on a
socket bound to a well known port � typically port 80.
When a connection establishment request (TCP SYN
packet) from a client is received on this socket (Figure 1,
position 1), the server TCP responses with a SYN-ACK
TCP packet, creates a socket for the new, incomplete
connection, and places it in the listen socket�s SYN-RECV
queue. Later, when the client responds with an ACK packet
to the server�s SYN-ACK packet (position 2), the server
TCP removes the socket created above from the SYN-
RECV queue and places it in the listen socket�s queue of
connections awaiting acceptance (accept queue). Each time
the web server process executes the accept() system call
(position 3), the first socket in the accept queue of the listen
socket is removed and returned. After accepting a
connection, the web server - either directly or indirectly -
reads the HTTP request from the client, sends back an
appropriate response, and closes the connection.

Before receiving the actual request, the server must
establish the TCP connection through three-way handshake
process with the client. This can cause two main problems
in the design of content aware scheduling system. The first
problem is that the server does not know which packet will
include the client�s request at first, it must rely on the TCP
states changing rules. To solve this problem, we develop
the pseudo-server module to listen and intercept the
coming-back TCP packet between the client and the

network dispatcher. The pseudo-server�s main advantage
lies in its avoidance of a lot of single server programs (such
as Apache Web Server and CORBA server) installed in the
dispatcher. Installing single server programs has two main
disadvantages: (1) single server programs consume system
resources; (2) it prevents the server program from doing
more important jobs, such as configuring Apache for
monitor and remote-configuration.

The second problem has to do with how the client�s request
is relayed to the selected node server. Because the node
server has not established the TCP connection through
three-way handshake process, the node server�s TCP/IP
stack won�t accept the relayed client�s request without any
more processing. A common solution is to establish a new
socket between the network dispatcher and the selected
node server. But this solution will incur more system cost.
In this paper, we use the faking three-way handshake trick
to reduce system cost.

The third issue concerns with the information delivery
mechanism in Linux kernel. In order to fake the three-way
handshake process, the node server requires the necessary
three-way handshake information to finish this faking
process. A method often used is to create a new network
packet for one or more information packets needed to
deliver. This method will cause other system expenses and
need the matching operations in the node server side. To
avoid these drawbacks, we develop a new, efficient
technique to deliver the information with an existing packet
in Linux kernel. The salient feature of this mechanism is
that it can prevent allocating new memory space and reduce
system cost. The basic principle of this mechanism is that
the sk_buff structure in Linux is not used entirely, thus
allowing the unused memory space in the sk_buff structure
to be used to deliver the handshake information. Two
schemes are implemented to handle the case when the
unused memory space is insufficient to contain the
handshake information.

For generality, we design two modules: the pseudo-server
module and the packet parser module. The pseudo-server
provides the function of listening on multiple known ports
at the same time. When a request (HTTP request, for
example) comes, the pseudo-server will listen on the
service port before the TCP connection has been
established. The kernel portion of the pseudo-server will
keep the selected three-way handshake information in a
kernel hash table in the handshake process. When the
pseudo-server notices that the TCP state is ESTABLISHED,
which indicates that the TCP connection between the client
and the network dispatcher has been established and the
next packet will include the request content, the kernel
portion will stop the listen process of this connection, and
will clear the related data structures in the kernel. The
packet parser module achieves generality by providing a
common interface for developers to add other packet parser
for different network services. In our prototype, we provide
parser modules for HTTP and IIOP, so our Content Aware

Scheduling System can support both HTTP and IIOP
services.

PROTOTYPE IMPLEMENTATATION

There are three main parts in the proposed content aware
scheduling system. In this section, we first present the
design of the dispatcher module, and then discuss the Mix-
LARD scheduling policy. Thirdly, another part of the
CASS, the design of the node server module will be
discussed. Last we will describe our implementation of
configuration and controlling interface for CASS.

Network Stack of the Network Dispatcher

CASS is implemented at the IP layer. Network services
must be configured in advance to inform CASS of the
incoming packet for this service. When a new packet
arrives, the packet will first be sent to the CASS for
processing in IP layer, where the check module of CASS
will check whether the coming service request has been
configured. If not, this packet will be sent up to the normal
TCP/IP stack where it will be processed directly. If this
network service has been configured, this packet will be
sent to the CASS for processing. Figure 2 depicts the
network stack of CASS in the network dispatcher.

Figure 2 Network Stack of the Network Dispatcher

If the TCP state of this connection has not reached the
ESTABLISHED state, the incoming packet will be sent up
to the pseudo-server module for three-way handshake
processing. If the TCP connection is ESTABLISHED, this
packet will be delivered to the parser module. Based on
service types, different parser will be called. The parsers�
responsibility is to acquire the request�s content. For
example, if the service is WWW, the request�s content is
the URL address; if the service is based on IIOP, the
request�s content is the parameter of service function. After
the parser module, the packet is delivered to the match
module which looks up the scheduling table according to
the request�s content. If the same request�s content is found
in the scheduling table, implying that the same request has
been scheduled before and it might still be in he node
server�s main memory, the request will be forwarded to the
node server. The timer of CASS is used to delete old items

Figure 3 LARD Scheduling Policy

from the scheduling table. If a request is scheduled again,
the timer of the request�s �content hash table column� will
be refreshed. If a request�s content can�t be found in the
scheduling table, the schedule will use the schedule policy
module to decide which node server to choose from. More
details of the schedule policy will be discussed in second
subsection.

After CASS has decided the target node server, the next
step is to forward the client�s request packet and handshake
process information to the selected node server. The
technique to deliver the handshake information along with
the forwarded request packet, described in Section 3, is
implemented in the data link layer. With this technique, the
request packet and the necessary handshake information
can be delivered together to the selected node server. The
processing in the node server will be discussed in third
subsection.

Mix-LARD Scheduling Policy

A new, mix scheduling policy called Mix-LARD will be
discussed in this section. This scheduling policy is based on
LARD. The basic principle of LARD is illustrated in Figure
3. In the figure, some web requests are arriving whose
types are A, B or C, separately. According the allocation
made a prior, each request will be forwarded to a selected
node server for this service. For example, when a type A
request arrives, this request will be forwarded directly to
the node server designated to handle �A� service request,
etc. Thus, the services with identical request content can be
scheduled to the same node server, thereby enhancing the
main memory cache hit rate at each node server by virtue
of increased locality. Because the data fetching rate is much
higher when the data is in the main memory than when the
data is in hard disk, the cluster performance can be
enhanced significantly.

Although LARD scheduling policy has many advantages, it
has two main disadvantages:

(1) The allocation must be decided a prior, and the data
must be allocated to different node servers. Hence, it is
inflexible, and difficult for the user to configure or
reconfigure.

(2) LARD policy can only support static web services,

unable to support dynamic web requests and other
protocols.

Therefore, we presented a hybrid scheduling policy, called
the Mix-LARD. The first and most important feature of
Mix-LARD is that it can support both dynamic and static
web requests at the same time. To do so, a smart unit is
embedded into the HTTP scheduling module. The smart
unit is responsible to check the types of clients� requests. If
a dynamic request is coming, the smart unit will find it and
say to the scheduler: �Hey, it is dynamic. Use dynamic
scheduling policy please.� And if a common static HTTP
request is coming, static scheduling policy will be called.
This smart unit in CASS is implemented in Linux kernel,
and its job is just to check some bits for every coming
packet, so it�s fast. It can work well without impairing the
system�s performance.

The second feature is that the scheduling allocation can be
changed through the refreshing operation with the content
aware Hash table�s timer. To understand this feather, let�s
imagine the scheduling allocation table as a cache. By
invaliding some stale data, we can enhance the hit rate of
the scheduling allocation table.

Mix-LARD policy also can support many network
protocols except HTTP, such as IIOP, etc. We implement
this feather by providing the common programming
interface for other possible network services.
Node Server Processing

In our content aware scheduling system, the responsibility
of a node server is to receive the request packet that is
forwarded by the network dispatcher, restore the forwarded
request packet and fake the three-way handshake process to
the user level network service programs like Apache.
Figure 4 depicts the processing flow in a node server.

The packet receive module is implemented in the TCP/IP
stack of a node server in the proposed CASS. This
module�s function is to receive the forwarded request. If it
finds a packet that has CASS processing tag, this request
will be passed to the packet resume module. The packet
resume module will separate the three-way handshake
information from the forwarded packet and restore the
original client request packet. After that, the forwarded

Figure 4 Processing Flow in Node Server

client request and three-way handshake information will be
delivered to the module responsible for faking three-way
handshake. In the faking module, some simulated
operations will be done to stimulate the state changing of
the TCP finite state machine. After these operations, the
web service programs (such as Apache, etc.) will not notice
that the client hasn�t done three-way handshake process
with it. It will handle the client�s request and return the
answer to client directly.

Configuration and Controlling Interface

Our CASS has supplied a configuration and controlling
interface for administrators. To configure or control our
CASS, an administrator can operate the web sever directly
or just telnet into the Linux operating system in the web
server to execute some commands. Some modules in CASS
are responsible for this.

DISCUSSION OF CASS APPLICATIONS

CASS supports many TCP-based network services. In this
section, we present two examples to show its application.
The two examples are its support of IIOP (Internet Inter-
ORB Protocol) and of cluster cache server.

CASS Support of IIOP

Because IIOP is the communication protocol that is used in
CORBA program, we implement a simple CORBA
program to show the support to IIOP. Our implementation
includes a CORBA client, two CORBA node servers and a
network dispatcher in which CASS is installed. A CORBA
service called �echo� is running on each CORBA node
server. This service�s function is to print �server� in the
terminal of the node server when it receive the client�s
request. According to the CORBA white paper, before the
client sends request to the cluster, it must first get the IOR
information that indicates necessary CORBA server
information. When the CORBA client�s request arrives at
the network dispatcher, CASS will parse the request�s
content and use the Mix-LARD policy to select a CORBA
node server. Then the request packet will be forwarded to
the selected CORBA node server. After the node server
receives the client request and the three-way handshake
information, this CORBA node server will print �server�

information in the terminal of this node server. It is because
CORBA uses IIOP as its communication protocol that this
test can show CASS�s support to IIOP. Figure 5 illustrates
the main idea of this test.

Figure 5 Support of IIOP

CASS Support of Cluster Cache Server

Cache server can be a PC plus the cache server software
(such as Squid, Inktomi, etc), or it can be a special cache
server like CacheFlow. In contrast to these cache server
solutions, cluster cache server can use cluster architecture
to provide support to cache services. Although the service
type is different, cache server has the same architecture as
cluster web server: the network dispatcher receives the
client�s request and forwards it to a selected node server.
By adopting CASS, cluster cache server can gain the
advantages of content aware scheduling policy: it can
deploy different cache materials in different node servers.
The cache server prototype implemented in this study uses
the �CASS + Squid Cache server� scheme, and it works
properly.

PERFORMANCE EVALUTATION

In this section, we present performance evaluation results
obtained with our prototype CASS cluster. While the
scalability test of the proposed CASS cluster is presented in
the first subsection, the second subsection provides
experimental results on the processing response time
performance. Finally, the third subsection compares the
performance of our CASS prototype with Linux Virtual
Server�an example for IP level scheduling system.

Scalability of CASS

We use Webbench 4.1 to test the scalability of CASS
cluster. The test environment includes four clients, one
controller. The responsibility of clients is to send http
requests to the cluster web server steadily, and the
responsibility of controller is to send commands to every
client to start the test and at the end of the test receives the
clients test data and computes statistics on them. Webbench
can test the throughput of the cluster, and our testing result
is depicted in figure 6. In this test, the number of node
servers increases from 1 to 6. In this scale, the throughput

0
50000

100000
150000
200000
250000
300000
350000
400000

1 2 3 4 5 6
#back-end nodes i n cl uster

Ap
ac

he
 T

hr
ou

gh
pu

t
(b

yt
es

/s
)

Figure 6 Scalability of CASS

of CASS cluster appears to scale almost linearly.

Processing Delay of CASS

This sub-section reports the test result on the processing
delay of CASS. The testing tool used is httperf. The
baseline delay was established by testing with one server
with CASS. The processing delay with CASS minus as
the baseline delay results in the CASS�s delay value. In
this experiment, the baseline server was found to process
135.4 connections per second, resulting in a per connection
processing delay of 1000ms/135.4 = 7.39ms. Similarly, the
CASS cluster with one server is measured to have a per
connection processing delay of 1000ms/66.2 = 15.11ms/.
Thus, the delay caused by CASS is 15.11 � 7.39 = 7.72ms.
In general, the processing delay in a WAN environment is
larger than 50ms, so the processing delay of CASS is
acceptable. This is also true in LAN environment for end
users.

Performance Comparison with Linux Virtual Server

Unlike CASS, Linux Virtual Server uses the IP level
scheduling policy that select a node server without
considering the request�s content. As mentioned earlier,
one of the advantages of CASS is that it can enhance the hit
rate of node servers� main memory cache by taking
advantage of locality. This performance advantage of
CASS, however, comes at the expense of the higher system
overhead of the network dispatcher compared with the
Linux Virtual Server because CASS needs to do extra work
related to request�s content. In this experiment, we assess
the performance impact of these two factors.Let α denote
the communication delay of two PC, so the communication
of the cluster�s �client � network dispatcher � node
server� architecture will be 2α. The processing delay of
Linux Virtual Sever is assumed to be β, the processing
delay of CASS to beβ�. Suppose that data fetching delay

from main memory is γ and the data fetching delay form
hard disk is δ. Finally, the operating system processing
delay is assumed to beε.

When the test set is big enough to overflow the one-node
server�s main memory capacity, data must be fetched from
the hard disk if Linux Virtual Server is adopted. On the
other hand, if CASS is used as the dispatching module, data
can be cached in different node server�s main memory, thus
avoiding the fetching delay from hard disk. In this case, the
processing delay of Linux Virtual Server can be expressed
in equation 1 below:

)1(2 Dlvs LLLLLεδβα +++=
The processing delay of CASS can be expressed in
equation 2 below:

)2(' 2 Dcass LLLLLεγβα +++=
Equation 1 can be transformed to equation 3 as follows:

)3()() (2 Dlvs LLLLLγδεγβα −++++=

In equation 3, （2α＋β＋γ＋ε）is the processing
delay of the Linux Virtual Server when it needs not fetch
data from hard disk directly. So, the quotient of the
processing delay of the Linux Virtual Server with that of
CASS can be expressed as equation 4 below:

)4(
'2

)()2(
D
D D

cass

lvs LLLLL
εγβα

γδεγβα
+++

−++++==

According to the test result in the second subsection, Dcavs
in equation 4 is 15.11ms. By using the same method, the
test shows that the processing delay of Linux Virtual Server
without direct hard disk fetching is 1000ms/115.6 =

8.65ms/conn. In other words, equation 4 can be
transformed to equation 5 as follows:

)5(
11.15

)(65.8 D LLLLL
ms

ms γδ −+=

In equation 5, δis the fetching delay when data is fetched
directly from hard disk. The fetching time from hard disk
includes three parts: the time it spends to locate the target
track (i.e., seek time), the time it spends to find the target
sector (i.e., rotation time) and the time it spends to fetch the
data (i.e., transfer time). Among these three parts, average
seek time dominates, so we use the average seek time as its
fetching delay from hard disk. The hard disk used in our
testing environment is IBM Deskstar 60GXP. The
information in IBM�s product homepage shows that the
average disk seek time is 8.5ms. Also, because the value of
γ is in the level of nanosecond [6], we can ignore it here.
In this case, equation 5 can be transformed to equation 6 as
follows:

)6(135.1
11.15

5.865.8
11.15

65.8 D L=+=+=
ms

msms
ms

ms δ

Thus, the average processing delay of CASS is 13.5%
lower than that of Linux Virtual Server because CASS can
prevent fetching data from hard disk directly.

CONCLUSION AND FUTURE WORK

We have presented a Linux content aware scheduling
system for network services. CASS can increase the node
servers� main memory cache hit rate and enhance the
cluster�s performance. It is possible for CASS to support
other TCP-based network services.

Our design employs a PC that acts as the central point of
contact for the server on the Internet, and distributes the
incoming requests to a number of back-ends. CASS is
implemented in Linux kernel except for the pseudo-server
module, whose responsibility is to provide general listening
function to different network services. The implementation
at node server side is to receive the forwarded packet from
network dispatcher and to fake three-way handshake
process to network service programs.

In terms of scalability, the proposed design shows almost
linear scalability with the number of node servers ranging
from 1 to 6. The processing delay of CASS is low
compared with the common network delay. We analyzed
the CASS�s processing delay in comparison with a
commonly used IP level dispatching technology�Linux
Virtual Server and the result shows that CASS�s processing
delay is 13.5% lower than that of the Linux Virtual Server.

In future study, we will optimize the performance of the
pseudo-server module and investigate other issues that
affect the performance of CASS.

REFERENCES

1. Cisco�s LocalDirector,
http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech
/lobal_wp.htm

2. C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T.
Anderson, and D. Culler, �Using Smart Clients to
Build Scalable Services�, Proceedings of the USENIX
1997 Annual Technical Conference, Anaheim,
California, January 6-10, 1997

3. D. Andresen, T. Yang, O. H. Ibarra, �Toward a
scalable distributed WWW server on workstation
clusters�, Journal of Parallel and Distributed
Computing, Vol.42, No.1, 10 April 1997, pp.91-100

4. E. Anderson, D. Patterson, E. Brewer, �The
magicrouter, an Application of Fast Packet
Interposing�, technical report, http://www.cs.
berkeley.edu/~eanders/projects/magicrouter/

5. E. Walker, �pWeb � A Parallel Web Server Harness�,
http://www.ihpc.nus.edu.sg/STAFF/edward/pweb.html

6. K. Hwang, Advanced Computer Architecture,
Parallelism, Scalability, Programmability, Prentice
Hall, 1999.

7. M. Aron, D. Sanders, P. Druschel, etc, �Scalable
Content-Aware Request Distribution in Cluster-Based
Network Servers�, Proceedings of 2000 USENIX
Annual Technical Conference, 2000

8. O. P. Damani, P. E. Chung, Y. Huang, etc, �ONE-IP:
techniques for hosting a service on a cluster of
machines�, Computer Networks and ISDN Systems, 29,
pp.1019-1027

9. R. S. Engelschall, �Balancing your Web site. Practical
approaches for distributing HTTP traffic�, WEB
Techniques, Vol.3, No.5, pp.45-6, 48-50, 52

10. T. T. Kwan, R. E. McGrath, D. A. Reed, �NCSA's
World Wide Web server: design and performance�,
Computer, Vol.28, No.11, Nov. 1995, pp.68 -74

11. V. Cardellini, M. Colajanni, P. S. Yu, �DNS
dispatching algorithms with state estimators for
scalable Web-server clusters�, World Wide Web
(Netherlands), Vol.2, No.3, pp.101-103, 1999

12. V. S. Pai, �Locality-aware Request Distribution in
Cluster-based Network Servers�, Proceedings of the
Eighth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-VIII), San Jose, California, October
1998

13. W. Zhang, S. Jin, Q. Wu, �LinuxDirector: a connection
director for scalable Internet services�, Journal of
Computer Science and Technology, 15(6), 560-571

14. X. Zhang, M. Barrientos, J. B. Chen, M. Seltzer,
�HACC: An Architecture for Cluster-Based Web

Servers�, Proceedings of the 3rd USENIX Windows NT
Symposium, July 1999

