
Providing Quantitative Scalability Improvement of Consistency Control for
Large-Scale, Replication-Based Grid Systems

Yijun Lu, Hong Jiang, and Ying Lu
Department of Computer Science and Engineering

University of Nebraska-Lincoln
{yijlu, jiang, ylu}@cse.unl.edu

Abstract

Consistency control is important in replication-
based Grid systems because it provides QoS
guarantee. However, conventional consistency control
mechanisms incur high communication overhead and
are ill suited for large-scale dynamic Grid systems. In
this paper, we propose CVRetrieval (Consistency View
Retrieval) to provide quantitative scalability
improvement of consistency control for large-scale,
replication-based Grid systems.

Based on the observation that not all participants
are equally active or engaged in distributed online
collaboration, CVRetrieval differentiates the notions of
consistency maintenance and consistency retrieval.
Here, consistency maintenance implies a protocol that
periodically communicates with all participants to
maintain a certain consistency level; and consistency
retrieval means that passive participants explicitly
request consistent views from the system when the need
arises in stead of joining the expensive consistency
maintenance protocol all the time. The rationale is
that it is much more cost-effective to satisfy a passive
participant’s need on-demand.

The evaluation of CVRetrieval is done in two parts.
First, we analyze its scalability and the result shows
that CVRetrieval can greatly reduce communication
cost and hence make consistency control more
scalable. Second, a prototype of CVRetrieval is
deployed on the Planet-Lab test-bed and the results
show that the active participants experience a short
response time at expense of the passive participants
that may encounter a longer response time.

1. Introduction

A popular strategy to improve the availability of
shared data in large-scale Grid systems is to replicate
data on geographically dispersed nodes. In this way,
participants can fetch the data from a nearby copy with
improved availability and response time. After

retrieving a copy to the local node, the local copy
becomes a new replica of the data and can be used to
serve other nodes’ need. In this type of replication-
based systems, it is important to guarantee the
consistency among participants’ copies of the same
data to make collaboration meaningful. In that sense,
improved consistency among participants can improve
participants’ perceived Quality of Service (QoS) of the
application.

There are two obstacles facing the design of a highly
scalable consistency control mechanism for large-scale,
replication-based Grid systems. First, large-scale Grid
systems have a large number of nodes that are often
geographically dispersed globally. Due to the network
congestions and the inability to control remote nodes,
maintaining even a relaxed consistency in such systems
involves formidable communication and management
cost.

Second, large-scale Grid systems are often dynamic.
I.e., nodes could join or leave the system at their will.
With such dynamism, both the group of replicas and
that of the nodes are interested in getting a replica
keeps changing. Thus, any static—in the sense that the
protocol fixed with certain replicas—is not suitable.

Current consistency maintenance mechanisms rely
either on applying the same protocol on all participants
or is based on the assumption that the replica group
does not change. The former scheme is not scalable in
large-scale Grid systems because it induces high
communication overhead in the presence of a large
number of participants (Cetintemel 2003). The
dynamic nature of large-scale Grid systems means the
latter scheme is not suitable as well.

In this paper, we propose a new low-overhead,
hence more scalable, consistency control architecture
to address this limitation, thus improving the QoS from
the consistency control’s point of view. This
architecture is consistency retrieval. We also present
the design, implementation, and evaluation of
Consistent View Retrieval (CVRetrieval), a system that
supports the consistency retrieval functionalities.

1.1. Consistency retrieval vs. consistency
maintenance

Consistency retrieval is in contrary to the notion of
consistency maintenance. In this paper, consistency
maintenance refers to the enforcement of consistency
through communication among all the participants. The
maintenance cost grows with the number of
participants. In a truly large system, the consistency
maintenance cost can be formidable.

Consistency retrieval reduces maintenance cost by
reducing the number of participants that a consistency
maintenance module needs to include. This approach is
both doable and preferable in practice. This is doable
because not all participants in a collaboration
application are equally active or engaged. In a digital
white board scenario where students listen to a lecture,
for example, the lecturers are more likely to issue
updates while a majority of the students are observers
—they monitor the white board and rarely issue
updates. From a consistency maintenance point of
view, the lecturers are more important than passive
students. So there is really no need to consider the
passive students group as far as consistency
maintenance is concerned at most of the time. The
rationale is that, if a participant does not have intensive
updating activities, it is far more cost-effective to
satisfy his or her needs on-demand. This approach is
also preferable because it does not change the way
most current consistency control protocol work. Thus it
is easier to be adopted. In this paper, we refer to this
on-demand-based consistency control mechanism as
consistency retrieval.

It is noteworthy that, while it is easy to statically
separate passive participants from active participants
and only maintain consistency for active participants,
CVRetrieval is significantly different from such an
approach in two aspects. First, CVRetrieval is not
merely differentiating active and passive participants
once and staying with a fixed differentiation
permanently. Instead, differentiation in CVRetrieval is
a dynamic one, meaning that the active and passive
participants are relative concepts and can change from
time to time. The ability to capture this dynamics is a
salient feature that sets CVRetrieval apart from any
static approaches. Second, CVRetrieval assumes that
passive participants do occasionally care about
consistency, instead of assuming that they are not
interested in the shared data1 at all.

1 We use the term “share data” and “shared object”
interchangeably depending on the scenarios.

Figure 1. The Relationship between CVRetrieval
and IDEA

1.2. CVRetrieval

CVRetrieval is a system that supports the
consistency retrieval functionalities. CVRetrieval is
built on top of IDEA (Lu 2007b; Lu 2008), an efficient
consistency maintenance protocol proposed by the
authors, as the consistency maintenance module. The
relationship between CVRetrieval and IDEA is
illustrated in Figure 1.

The evaluation of CVRetrieval is done in two parts.
First, we theoretically analyze the scalability of
CVRetrieval and compare it to other consistency
maintenance protocols. The results show that
CVRetrieval can greatly reduce communication cost
and hence make consistency control more scalable.
Second, a prototype of CVRetrieval is developed and
deployed on the Planet-Lab test-bed (Peterson 2003)
for performance evaluation. The results show that
active participants in CVRetrieval have faster response
times than in pure consistency maintenance protocols at
the slight expense of passive participants that can
experience longer response times depending on the
system setting, although the retrieval performance is
still reasonably efficient for the latter.

The rest of the paper is organized as follows.
Section 2 discusses background and related work.
Section 3 discussed the design issues of CVRetrieval.
The design of CVRetrieval is then presented in Section
4. Section 5 analyzes the scalability improvement of
CVRetrieval. Section 6 experimentally evaluates
CVRetrieval based on a prototype deployed on Planet-
Lab. Section 7 discusses future trends in consistency
control research for large-scale Grid systems. Finally,
Section 8 concludes this paper and discusses future
work.

2. Background

Improving the scalability of consistency control has
been a major research topic in distributed collaboration
applications.

Most collaboration applications nowadays originate
from single-user applications. For example, MS Word
was previously used by a single user to edit his or her
file and is then modified to incorporate collaboration
capabilities. A straightforward way to share these
applications is to place a central control for consistency
maintenance. In MS NetMeeting, for example, only
one participant can operate on the shared object; all
other participants will be blocked (Begole 1999).

To prevent blocking, which causes access delay, the
granularity of sharing is often adjusted to make the
sharing unit small enough to prevent blocking to some
extent. However, this approach is inherently not
scalable for two reasons. First, for any given system,
the granularity cannot be spited indefinitely. Second, it
is still a centralized system and, in the presence of an
active unit, the blocking cannot be prevented and that
makes it not suitable for a large-scale system with a
large number of participants.

Newly developed distributed online collaboration
applications use replication-based scheme to improve
scalability and availability. As all the replicas have a
copy of the collaboration application, inconsistency
level among them hence is relaxed (Prakash 1994;
Schuckmann 1996). While this scheme works well in
many applications and helps distributed collaboration
applications scale to large-scale distributed networks,
relaxed consistency does not provide QoS guarantee.

Recently, researchers have been trying to achieve
relaxed yet bounded inconsistency for distributed
online collaboration applications. Yu and Vahdat
defined metrics to evaluate consistency level for a wide
range of applications (Yu 2000). Chang et. al. derived
an algorithm to support different consistency level for
different users in an online conference application
(Chang 2002). Also, Local-lag and Timewarp were
developed by Vogel and Mauve to eliminate short term
inconsistencies and repair inconsistency, thus prevent
unbounded inconsistencies (Vogel 2001). A more
recent work extended Vogel and Mauve’s work by
considering the same problem in a larger network (Li
2004). However, these works are still use consistency
maintenance for all participants, which cause high
overhead for a system with a large number of
participants.

CVRetrieval differs from previous work in the sense
that it considers the consistency retrieval aspect, not
just consistency maintenance. To the best of our

knowledge, CVRetrieval is the first work to explicitly
consider the retrieval aspect of consistency control in
distributed online collaboration applications.

3. Design Issues

CVRetrieval has two design issues. First, we need to
differentiate different roles of CVRetrieval and the
conventional consistency maintenance protocol.
Second, we need to define a procedure for CVRetrieval
to satisfy passive participants’ consistency needs on
demand.

3.1. The roles of IDEA and CVRetrieval

IDEA achieves efficient consistency maintenance by
detecting and resolving inconsistencies among active
writers more frequently than passive participants, in
which active writers are dynamically tracked by IDEA.
To reduce the number of nodes maintained by IDEA,
CVRetrieval only lets IDEA handle active participants
who are actively updating their replicas.

3.2. Satisfying passive participants’
consistency needs on demand

Since CVRetrieval does not actively maintain
consistency for passive participants who may need to
access their replicas occasionally, CVRetrieval
provides a way for these passive participants to access
consistent objects when the need arises. From the
passive participants' point of view, the only thing that
they need to know is where to find a consistency
object. In IDEA, any active writer can provide a
consistent object. So CVRetrieval just has to inform
passive writers about this active writers’ information.

CVRetrieval deploys a publish-subscribe
infrastructure (Banavar 1999) to publish the active
writers information to the passive participants. In this
way, CVRetrieval satisfies passive participants’
consistency needs with an on-demand fashion.
Moreover, CVRetrieval chooses publishers and
subscribers in a way to capture the common interest
among participants. In this way, passive participants
associated with the same subscriber can help each other
without fetching data from publisher all the time. As
we will see in Section 6.3, exploiting common interest
greatly improves the scalability of CVRetrieval.

4. CVRetrieval Design

We try to address several design issues here:

• How do participants join the system and how to
map the participants to the IDEA infrastructure?

• What is the workflow of CVRetrieval?
• How does IDEA communicate with the

publishers so that the publishers have the
updated information of the top layer nodes (that
includes all active writers) for different object?

• How to choose subscribers for observers?
• How does the publish-subscribe scheme work?

Throughout this section, we use a virtual white
board application to make the discussion concrete.

4.1. A virtual white board scenario

We consider a distance education scenario in which
several lecturers give lectures and a group of students
join the discussions by manipulating a virtual white
board (logically centralized and physically distributed
on each participant’s site). Other students who are not
part of the discussion group will passively observe the
discussion by watching the virtual white board.

In this scenario, the lecturers and the students in the
discussion group conduct active discussions by issuing
updates on the white board. Due to the nature of
discussion, not all the members in the discussion group
will speak up at the same time. During the discussion,
membership of the active white-board-based speaker
group will change constantly, and such change is
usually unpredictable because the spontaneity of an
active discussion.

4.2. Participants join the system

We assume that there is a mechanism for
participants to know the ID of the white board session
and the time when the session starts. In practice, this
can be done by some offline method, such as through
an email list.

After all the participants log in, they form a group.
Each participant modifies his or her own white board
and those updates will show on others’ white boards.

4.3. Mapping between participants and the
IDEA infrastructure

As illustrated in Figure 2, we differentiate three
types of participants: active writers, passive writers,
and observers. They are mapped to IDEA as follows.

First, CVRetrieval differentiate observers from
writers. When participants log in the white board
application, they are required to indicate whether they
are members of the discussion group. If yes, they are

Figure 2: Three classes of participants

characterized as writers that are handled by IDEA; if
no, they are classified as observers that are handled by
CVRetrieval.

Second, IDEA differentiates active writers from
inactive writers after the system starts to run using a
two-layer structure. IDEA tracks active writers (by its
top layer) and passive writers (by the bottom layer)
based on frequency of their updating activities.

4.4. The Workflow

 Figure 3 shows the workflow of the publish-
subscribe mechanism as well as the retrieval process.
 The basic publish mechanism is shown in Figure 3.1.
In step 1, the active writers notify publisher about their
presence; in step 2, a publisher notifies its subscriber
about the up-to-date active-writer group; finally, in step
3, a subscriber notifies its clients (the observers) about
the active-writer group.
 A client can issue an on-demand retrieval request, as
shown in Figure 3.2. In step 4, an observer issues a
retrieve request to its subscriber. If the subscriber has a
valid cache, it will return the local copy to the observer
(step 7); otherwise, it requests a consistent view from
one of the active writers (step 5) and, after receiving
the view (step 6), it returns the copy to the observer
(step 7) and caches the view locally.
 An observer can also indicate his or her preference
to retrieve a consistent view periodically. In this case,
the observer does not need to explicitly issue a retrieval
request on-demand. As shown in Figure 3.3, this
process is similar to that in Figure 3.2 except that there
is no step 4, and steps 5 through 7 are executed
periodically.
 If the subscriber is already overwhelmed by the
retrieval requests or publishing, there is no point of
sending more retrieval request to it, and that is where
the active-writer group information received by
observers in step 3 comes into play. As shown in
Figure 3.4, an observer can use its knowledge of the
active-writer group to contact a nearby active writer

3.1: Basic publish mechanism 3.2: Active retrieval for
observers

3.3: Automatic/Periodic
retrieval from observers

 3.4: When subscribers are already overwhelmed 3.5: The complete process

Figure 3: Workflow of CVRetrieval

directly (step 8 and 9). As an optional step, the active
writer can forward a copy to the subscriber so that the
subscriber will have a fresh copy as long as it is able to
handle more requests again (step 10).
 Finally, the complete process is illustrated in Figure
3.5. We will discuss the key components of the process
in more details in the rest of this section.

4.5. Communication between IDEA and
publishers

 In CVRetrieval, each object has a designated
publisher, which is responsible for publishing the top
layer nodes’ information on behalf of the objects.
There are two issues here: (1) how to map an object to

a publisher? (2) how do publishers learn the top layer
nodes’ information from IDEA?

There are two ways to map an object to a publisher
based on the total number of shared objects. If the
number of shared objects is small in an application,
such as in the white board application, the shared
objects can be mapped to a single publisher. If the
number of shared objects is large, such as in online
gaming, certain mechanism is needed to balance
multiple publishers’ load. Hash-table-based scheme
(choose publishers based on the hashed value of the
object IDs), such as Distributed Hash Tables (DHT)
(Ratnasamy 2001; Rowstron 2001; Stoica 2001), is
desirable for both its load balancing and its easy lookup
(subscribers can find the right publishers by simply
hashing the object IDs).

The publishers learn the top layer nodes through
communication with them. From the mapping
procedure, the top layer nodes of an object know where
their corresponding publisher is. The top layer nodes
will communicate with their publisher whenever a node
joins or leaves the top layer. The publisher will publish
these updates to its subscribers subsequently.

However, this published information may become
obsolete due to the propagation delay. For example, a
subscriber could have old information (it states that A
is in the top layer of object f but A is in fact no longer
in the top layer anymore). We use pointers to solve this
problem. In an example illustrated in Figure 4, we let A
keep two pointers of its fellow members when it is in
the top layer of object f (left half of Figure 4) and,
when A is no longer in the top layer, it can at least
forward the request to the other top layer nodes (B or C
in this case, see the right half of Figure 4). Because it is
very unlikely that all three nodes are leaving the top
layer during the time of the propagation delay, this kind
of old information will be transparent to users. In the
case that this mechanism does not work, the request can
always be returned back to the subscriber, who can
then pull updated information from the publisher (see
Section 4.7).

4.6. Choose subscribers for observers

While there are many ways to choose subscribers,
we use ISPs (Internet Service Providers) of the
observers, rather than some observers themselves, as
the subscribers for two reasons. First, the ISPs are
much more stable than their clients (i.e., observers)
because of their status as Internet entry point. Hence,
using ISPs as the subscribers makes the publish-
subscribe structure (i.e. the positions of publishers and
subscribers) much more stable. Second, while clients
change their interests rather frequently, which—if we
use clients as subscribers—causes frequent
membership change for a publisher and the publisher
that in turn needs to adjust its publishing scheme to
reflect that change, ISPs’ interests are relatively stable
because their interests do not change with respect to
how many and which clients are interested in an object,
as long as some client is interested in that object.

When a client becomes interested in an object, it
informs its ISP, which will subscribe the object’s
information if it hasn’t done so. If the ISP has already
subscribed for that object, it will just add the client into
its client list and inform the client about all the future
updates about that object’s top layer nodes. When a
client is not interested in an object anymore, it informs
its ISP too. If, after this client’s exit, the ISP has no

Figure 4. Use pointers to handle stale information

client for that object, it will unsubscribe this object;
otherwise, it deletes the client from its client list.
 A subscriber has two responsibilities. First, it
informs a publisher to periodically push new updates to
it at a predefined rate and, when a new update arrives,
immediately forwards the update to its clients. Second,
when a client is in need of a consistent view
immediately, the client can explicitly ask the subscriber
to retrieve the view on its behalf. When a subscriber
receives the retrieval request, it either returns a view
from its cache (if it has one because other clients have
just retrieved it before) or retrieves the view directly
from the writer.

4.7. The publish-subscribe scheme

As shown in Figure 3, we use a multicast tree and
filters to sent information from publishers to their
subscribers. In this scheme, each publisher builds a
multicast tree and an interior node forwards the packets
further down the tree only if there are some nodes in its
subtree that have subscribed it.

In the naïve form, the publisher sends all the active
writers’ information down the tree structure and all the
subscribers will receive that information. To improve
the system’s scalability and efficiency, CVRetrieval
incorporates the following optimizations.

First, a publisher in CVRetrieval only sends a subset
of the list of the top layer nodes to each subscriber to
preserve the network bandwidth. This raises two
questions: how to choose a subset for a given
subscriber and how to disseminate different subset of
top-layer node information through a multicast tree?

When choosing the subset, the publisher has several
factors to consider. First, the active writers in the
subset should be physically close to the subscribers so
that the retrieval can be done efficiently. Second, one
or two remote active writers can be included in each
subset to provide redundancy because physically close
machines tend to go down at the same time (for
example, a power outrage). Third, the publisher needs
to consider load balance so that no active writer is
overwhelmed by retrieval requests.

Now we illustrate how to disseminate the different
subsets via a multicast tree. First of all, the subscribers
report their physical locations to the root in a bottom-
up fashion and the messages are aggregated at each
interior node. Second, the publisher chooses different
subsets for its immediate children in the multicast tree
based on these children’s subtree’s interests (i.e. the
collective interest of the nodes in its children’s subtree)
and disseminate the subsets. For each interior node, it
further divides the subset for its own immediate
children. This process continues until the leave nodes
are reached.

5. Scalability of CVRetrieval

In this section, we compare the communication cost
of the CVRetrieval with two consistency maintenance
protocols—Deno and IDEA—because these two are
the most similar approaches to CVRetrieval. Due to
page limit, interested readers are referred to Chapter
5.3 of (Lu 2007a) for a full discussion about the
rationale behind this comparison.

5.1. Deno and IDEA

Deno (Cetintemel 2003) is a peer-to-peer voting
protocol in which each writer’s update travels across
the whole replica group to detect and resolve any
inconsistency. During Deno’s serialization process,
further updates are allowed but their updates need to be
serialized at a single point to maintain a consistency
state.

IDEA is a detection-based consistency maintenance
protocol for large-scale distributed systems proposed
by the authors. Instead of enforcing a fixed consistency
protocol beforehand, IDEA detects inconsistencies
when they arise and resolve them based on the
applications’ ongoing need for consistency.

In this analysis, we assume that all the protocols
incur the same average message size and, on average,
each message travels the same distance. Hence, the
differentiator of the protocols is the total number of
messages incurred by each protocol.

5.2. Assumptions

In this analysis, we make the following assumptions
and definitions.

[1] c: the average number of simultaneous
writers.

[2] n: the total number of nodes in the system that
join the consistency control process.

[3] n1: number of writers.
[4] nhot: number of active writers among the n1

writers.
[5] f1: number of updates of active writers during

a given period of time t.
[6] npass: number of passive writers among the n1

writers, where nhot + npass = n1.
[7] f2: number of updates of passive writers

during a given period of time t.
[8] n2: number of observers, where n2 = n – n1.
[9] p: total number of publishers in CVRetrieval.
[10] s: total number of subscribers in CVRetrieval.
[11] q1: number of publishings during a given

period of time t.
[12] q2: number of retrievals during a given period

of time t.
[13] C_deno: total number of messages exchanged

in Deno.
[14] C_idea: total number of messages exchanged

in IDEA.
[15] C_r: number of messages exchanged in

CVRetrieval.

5.3. The Analysis

In this analysis, we consider the consistency control
for one single object because this simplifies the
analysis and, based on the result, it is easy to extend the
analysis to multiple objects.

5.3.1. Communication cost of Deno

In Deno, each update travels the whole group and,
when it meets another conflicting update, the update
will be resolved at that time. In this analysis, each time
an update reaches a node, we consider it as a new
message because the node that is reached essentially
regenerates the original message by relaying it. Thus,
given an update, it only stops traversal when it meets
another conflicting update. From the assumption 1, we
know that there are c conflicting updates in the system
at one time on average. For simplicity, we further
assume that the updates propagate along a linear
structure (without this assumption, the updating process
becomes intractable). Then, on average, an update
travels 1/c of the network to meet a conflicting update
and stops.

Now we calculate the communication cost as
follows. Because there are n nodes in the system, each
update needs to travel n/c hops, which equals to n/c
messages in total. In a given period of time t, there are
nhot*f1 + npass*f2 updates, so the total number of
messages generated in a given period of time t is:

)(_ 21 fnfn
c
ndenoC passhot ×+××= (1)

5.3.2. Communication cost of IDEA

In IDEA, the updates from active writers will be
detected among the active writers and those from the
passive writers will need to go through the whole
network to be detected.

Similarly to the analysis in Deno, we assume the
existence of c concurrent conflicting updates at one
time. However, in the case of IDEA, the updates from
active writers stay at the top layer, implying that the
active writers actually see less than c concurrent
updates because the updates from passive writers won’t
show up in the top layer at the same time. So, while
passive writers still see c concurrent updates, we
assume that the active writers sees only chot concurrent
updates, where chot < c. Then an update from an active
writer will generate nhot/chot messages, and that from a
passive writer will generate n/c messages. There are
nhot*f1 updates from active writers and npass*f2 updates
from passive writers in a given period of time t.

For the communication cost associated with
observers, we follow the calculation used in the Deno
case and conclude that the overhead is two messages
(one for request, one for reply) for each retrieval type
request. Then, because we have assumed that, on
average, each observer will issue q2 requests in time t,
the total communication overhead is 2*n2*q2.

Putting the communication cost of writers and
observers together, the communication cost of IDEA is:

2221 2_ qnfn
c
nfn

c
nideaC passhot

hot

hot ××+××+××=

 (2)

5.3.3. Communication cost of CVRetrieval

The communication cost of CVRetrieval involves
three parts: (1) the detection of inconsistency among
active and passive writers; (2) the cost associated with
the publish-subscribe scheme, which includes the
communication cost between writers and publishers,
between publisher and subscriber, and between
subscribers and their clients; and (3) the retrieval
operation for observers.

First, CVRetrieval detects inconsistency among
active writers in the same manner with that of IDEA
because it depends on IDEA to maintain consistency.

Thus the communication cost incurred by active writers
is (nhot/c)*nhot*f1. For passive writers, however, they
need not to go through the whole network; instead, they
only need to detect among the writers’ group (with n1

writers) that excludes the observers. Thus, the
communication cost associated with the updates from
passive writers is (n1/c)*npass*f2.
 Second, for the communication cost associated with
publish-subscribe scheme, we first derive the cost for
one round of publish and then multiply it by the publish
rate q1 to get the total communication cost in a given
period of time t. Because an active writer only notifies
its publisher when it becomes an active writer and
when it becomes a passive writer. Here we
conservatively assume that, in one round of publish,
half of the active writers are new ones (this is indeed a
very extreme scenario because we essentially assume
50% of the active writers leave the group and the same
number of new active writers join the group). Thus, in
one round of publish, there are nhot messages exchanged
between writers and publishers because each old active
writer or new active writer needs to inform exactly one
publisher.
 Then, there are s messages exchanged between
publisher and subscribers because there are s
subscribers in total and each needs to be informed
exactly once. Finally, let’s conservatively assume that
all the n2 observers will need to be informed about its
subscription. Then we know that n2 messages are
exchanged in one round. Adding the three parts of cost
together and then multiplying the publishing frequency,
we get the total communication cost associated with the
publish-subscribe scheme in time t is q1*(nhot+s+n2).

Third, each observer will retrieve a consistent view
for the object he or she is interested in, which results in
n2 retrievals. Because each retrieval consists of two
messages (one request, one reply), there are 2*n2

messages exchanged in one retrieval operation. Finally,
because we assume that each observer retrieve q2

consistent views in time t, the total number of message
exchanged in t is 2*q2*n2.

So the total communication cost in a given period of
time t, incorporating all three parts, is:

22

21

2
1

1

2
)(

_

nq
nsnq

fn
c
nfn

c
nrC

hot

passhot
hot

hot

××+
++×+

××+××=

 (3)
 Note that parameter s is related to n2 because there
are s subscribers serving the n2 clients (recall that each
observer subscribes k objects). Although there is no

Sets n n1 nhot c chot f1 f2 q1 q2 s Deno IDEA CVRetrieval
1 1000 50 10 4 3 5 3 2 5 19 42500 39667 13125
2 1000 100 20 4 3 5 3 2 5 18 85000 69667 17543
3 1000 200 50 4 3 5 3 2 5 16 175000 124667 36399

Table 1: Analytical Results

ground rule about how many clients a subscriber should
have, it is intuitive that the number of clients should not
overwhelm the subscribers. Considering that the
information that is being published is rather small in
quantity (it is only a list of active writers and the
message is maybe only a few KBs), we believe that
each subscriber should support at least up to 50 clients,
which incurs less than 1MB data traffic and should not
be a burden for a subscriber. Thus, in the following
analysis, we use n2 /50 as the value for s.
 Further, the value of q1 is associated with how
frequent the active writer group changes and q2 is
associated with the observers’ interests. Because
CVRetrieval deals with loosely coupled distributed
online collaboration applications, we believe that, in a
short period time of t, it is sufficient to assign a small
numerical value for q1. For q2, we believe that it should
be reasonably large so that it can satisfy observers’ need
of consistent view. However, q2 cannot be too large,
which implies smaller inter-retrieval time, because there
is no point of issuing the second retrieval before
response of the first request has arrived. Thus, we
believe that it should be reasonable to make q2 two to
three times as large as q1.

5.3.4. The comparison

 In this comparison, we first do an asymptotic analysis
to compare the overall growth rate of Deno, IDEA, and
CVRetrieval. Since the asymptotic analysis is
approximate in nature, we then use a sensible setting of
the parameters to calculate and compare the three
protocols.
 We conduct the asymptotic analysis as follows. In the
equation 1 for the communication cost of Deno, n1 and
n2 are fractions of n, so n1 and n2 grows as fast as n.
Then, f1 and f2 are updates in a period of time and is not
supposed to be a large number and won't grow with n,
so we can safely treat them as rough constants. Hence,
the cost of Deno would be O(n2).
 For the analysis of the communication cost of IDEA,
we follow the analysis the same way as that of Deno—
n2 have similar growth as n, f1 and f2 are more like
constant. Then, from equation 2, the cost of IDEA is
O(n2 + n), which is also O(n2). Similarly, the cost of
CVRetrieval, derived from equation 3, is also O(n2).

 The main message here is this, while there are
differences in the communication cost among all the
three protocols, the difference is not an exponential one.
This makes sense because all three protocols, to some
extent, depend on intercommunication of a group of
nodes, which results the O(n2) result. The real
difference is how large the group is—the larger the
group, the more communication cost will be incurred.
From this aspect, Deno has the largest group (the whole
system), IDEA has a smaller number (only for the group
of active writers). CVRetrieval has the same group size
as that of IDEA but has a much smaller size of passive
writers, hence achieving the smallest communication
cost.

We now proceed to the second step of this
comparison by comparing C_deno, C_idea, and C_r by
assigning real numbers to the parameters in their
respective expressions. Based on the logic presented
earlier, we set s = n2/50 and assign 2 and 5 to q1 and q2,
respectively. We also set chot as 3*c/4, which is actually
quite conservative and put IDEA and CVRetrieval in
disadvantage considering that most updates should
come from active writers. The analytical results are
summarized in Table 1.

As shown in Table 1, CVRetrieval incurs much
lower communication cost than pure consistency
maintenance protocols in all three sets of data. This
observation indicates that the majority overhead of
CVRetrieval comes from the consistency maintenance
of writers, which validates our hypothesis that, by
separating observers from writers, the consistency
control overhead can be substantially reduced.

Additionally, the overhead of CVRetrieval increases
in a slower speed than those of Deno and IDEA when
the number of updates increases (reflected by the
number of active writers). Comparing the results of set
1 and set 3 and we can see that the overhead of
CVRetrieval in set 3 is 2.8 times as large as that in set
1, while that ratio is 4.1 for Deno and 3.1 for IDEA. We
believe that this is an indication that CVRetrieval scales
better than the other two methods.

6. Experimental Results

We have implemented a prototype of CVRetrieval
on top of the Planet-Lab (Peterson 2003). We use this

prototype to evaluate the performance of CVRetrieval.
The metric we use is response time.

For a consistency maintenance protocol, the
response time is defined as the time difference between
the point when an update of an object is first committed
and that when a participant receives that update (with a
certain level of consistency guarantee). In the case of
CVRetrieval, the response time has different definition
for writers and observers. For writers, the definition of
response time is the same as that in a consistency
maintenance protocol. For observers in CVRetreivals,
however, the response time is between the point of time
when an observer issues a retrieval request for a
consistent view of an object and that when it receives
the view.

6.1. Experiment setup

 We emulate a white board application for evaluation
purposes. The application is emulated by following its
operational sequences. Further, we assume that these
updates are all conflicting with one another. A writer
informs its publisher when it becomes or ceases to be an
active writer. The publisher then informs its subscribers
(the ISPs who subscribe on behalf of their clients)
periodically. Observers specify their interest and inform
their subscribers about that.
 In the current setting, there are ten writers among
which four are active writers and the other six are
passive ones. There are one publisher and four
subscribers. Each subscriber serves three observers. In
other words, this is a 22-nodes system, excluding
publisher and subscribers. At the beginning of the
experiment, each active writer issues one update every 5
seconds until the experiment ends. These updates got
disseminated among active writers immediately and,
once it starts to propagate to passive writers, each hop
will only disseminate the updates once every 5 seconds.
Each observer retrieves the consistent view every 20
seconds. The experiment runs 300 seconds.

We also implemented a Deno-like protocol for
comparison. In the Deno-like protocol, we organize the
22 participants (here, we don’t consider the publisher
and subscribers as participants because they are only
facilitating CVRetrieval) in a linear fashion in which the
updates are propagated from one to the other. To make
the results comparable, we assume the same updating
patterns for the ten writers.

6.2. Response time for writers

 We measure response times for active writers and
that for passive writers. The experiment was run ten

Type Max
(seconds)

Min
(seconds)

Average
(seconds)

active writer 1.73 1.41 1.59
passive writer 11.8 10.2 10.98

Table 2: Response time for writers

times and the average response time, as well as
maximum and minimum values, are measured and
shown in Table 2.

From the result, we can see that the response time of
active writers is very small. This is because the
dissemination of updates is instant among active
writers. While it is usually very costly to disseminate
update instantly among participants, CVRetrieval can
afford to do so because, via classification, there are only
a relatively small number of active writers in existence.

As shown here, the average delay for passive writers
is over 10 seconds, which looks rather high. However,
this is because we set a five-second delay between the
dissemination of updates among passive writers. In
practice, system administrators can choose a shorter
delay to improve the response time for passive writers
at the expense of increased bandwidth overhead.

6.3. Response time for observers

There are two aspects of response time for observers.
First, the time that it takes for them to receive the
periodically published updates. Because this part of
delay primarily depends on the publishing rate, we do
not measure it here. Second, the response time for an
explicit retrieval operation, i.e. when the observers
actively retrieve the most updated view from the
subscribers, the time it takes to get the view.

The delay of explicit retrieval depends on whether
the observer can find the view in its subscriber’s local
cache (because another observer retrieved the same
view a moment ago). Intuitively, the more retrievals can
be satisfied with the subscriber’s cache (a higher cache
hit rate), the smaller the response time is. In this
experiment, we give three settings of the cache hit ratio:
50%, 66.7%, and 75%. For each setting, we run ten
experiments and the results are summarized in Table 3.

The result shows that the retrieval process is indeed
very efficient and this efficiency increases with cache
hit rate in subscribers.

6.4. Comparison to consistency maintenance
protocols

 We now compare the performance of CVRetrieval
with a pure consistency maintenance protocol. For a

pure consistency maintenance protocol, we assume that
all participants are treated equal. In terms of updates
dissemination, there are two types: active ones that
disseminate a received update to other participants as
soon as it arrives and passive ones that only periodically
disseminate all the updates it received so far. Because
the passive ones work similarly to the way
CVRetrieva/IDEA treats passive writers, but with more
participants, it is doubtless that CVRetrieval/IDEA will
have a better performance. For this reason, we only
experimentally compare CVRetreival to the active ones.
 The consistency maintenance protocol we
considered here has all the 22 participants we used in
the CVRetrieval evaluation. Because this protocol
actively disseminates updates, each participant relays a
received update as soon as it is received. Finally, the
writers have the same updating patterns as in previous
experiments. We run this experiment ten times and the
results are shown in Table 4.
 From this table, we can see that the response time of
the pure maintenance protocol is larger than that of
CVRetrieval’s active writers (comparing to the data in
Table 2). However, the absolute value of the response
time is not that large. We suspect that is because, due to
the heavy load of Planet-Lab nodes, the write operation
alone needs too much time to be committed. To validate
our hypothesis, we profile one run of the experiment
with the pure consistency maintenance protocol and
record the response time for all 21 participants (this
does not include the writer who committed this update)
and the result is depicted in Figure 5.

From this figure, we can clearly see that the first hop
delay dominates the system’s response time. With
greater computing power that can minimize the cost of
committing updating operations, we expect the
advantage of the CVRetrieval approach to be much
more obvious.

It is worth noting that most current protocols uses
passive update dissemination method, with which the
advantage of CVRetrieval will become more
pronounced. Furthermore, the most important advantage
of CVRetrieval is its saving of communication cost,
especially in a system with a large number of
participants, as analyzed in Section 5. We believe that
the two features—efficiency and scalability—together
make CVRetrieval a viable alternative to pure
consistency maintenance protocols.

7. Future Trends

As Grid computing becomes a key enabling
technology for large-scale collaboration application,
quantitatively guaranteeing its QoS will become more

Cache hit
rate

Max
(seconds)

Min
(seconds)

Average
(seconds)

50% 0.48 0.33 0.37
66.7% 0.3 0.24 0.28
75% 0.16 0.12 0.14

Table 3: Response time for observers

Max
(seconds)

Min
(seconds)

Average
(seconds)

2.45 1.77 2.07

Table 4: Response time of a pure consistency
maintenance protocol with active update

dissemination

Figure 5: Response time for different hops

and more important. In terms of consistency control,
advances in QoS will, based on the authors’ opinion, be
on two fronts: scalability and reliability.

Scalability refers to a protocol’s ability to scale to a
large number of geographically dispersed nodes. With
the size of Internet keeping increasing, it becomes
necessary for the Grid systems to maintain a meaningful
consistency among different nodes while at the same
time imposing very low communication overhead.
Without this ability, practitioners will face a dilemma:
either accept poor QoS in order to run the system in a
large scale, or achieve high QoS at the expense of not
cooperating with remote nodes. CVRetrieval presented
in this paper is one way to improve scalability. Other
alternatives are certainly possible.

Reliability refers to the robustness of a protocol. As
Grid becomes an essential computing platform upon
which numerous applications run, it is essentially that
any key component of the Grid itself, including
consistency control, is resilient to frequent packet delay/
loss and node failure. In this respect, any new

consistency control protocols will need to explicitly
consider packet delay/loss and node failure in the
design phase. Reliability in CVRetrieval depends on the
robustness of the publish/subscribe infrastructure. It is
interesting to see other alternatives that can provide
even stronger and low overhead reliability guarantee.

8. Conclusions and Future Work

In this paper, we presented the design, analysis,
implementation, and evaluation of CVRetrieval, a
system that improves the scalability of consistency
control in large-scale, replication-based Grid systems by
separating consistency retrieval from consistency
maintenance.

CVRetrieval is fully evaluated by both analysis and
prototyping. The analysis result showed that, comparing
to pure consistency maintenance protocols, CVRetrieval
incurs significantly less communication overhead and
hence improves the scalability of consistency control in
general. Through prototyping on the Planet-Lab test-
bed, we evaluated the response time of CVRetrieval and
the results showed that CVRetrieval achieves a sensible
tradeoff: it achieves shorter response times for writers at
the expense of a longer response time for observers and,
more importantly, improves the system’s scalability as a
whole.

In the future, we plan to improve the scalability and
performance of CVRetrieval further through
optimization. For example, we can drive active writer
information towards the most needed subscribers by
controlling the publishing rates along different paths. In
such a scenario, the subscribers (the ISPs) will report
their interests (in terms of frequency of issued requests)
to the publisher, which in turn adjusts the publishing
rates by publishing at a higher rate to a path that can
reach subscribers that reveals higher interest than
others.

References

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J.,
Strom, R.E., & Sturman, D. C. (1999). An Efficient
Multicast Protocol for Content-based Publish-Subscribe
Systems, International Conference on Distributed
Computing Systems (pp. 262-272). Washington D.C.
USA.

Begole, J., Rosson, M. B., & Shaffer, C. A. (1999), Flexible
Collaboration Transparency: Supporting Worker
Independence in Replicated Application-Sharing Systems.
ACM Trans. On Computer-Human Interaction, Vol, 6,
No. 2, 95-132.

Cetintemel, U., Keleher, P. J., Bhattacharjee, B., & Franklin
M. J. (2003). Deno: A Decentralized, Peer-to-Peer Object-

Replication System for Weakly-Connected Environments.
IEEE Transactions on Computers, 52(7), 943-959.

Chang, T., Popsecu, G., & Codella, C. (2002). Scalable and
Efficient Update Dissemination for Interactive Distributed
Applications, International Conference on Distributed
Computing Systems (pp. 143-152). Viena, Austria.

Li, F., Li, L., & Lau, R. (2004). Supporting Continuous
Consistency in Multiplayer Online Games. ACM
Multimedia (pp. 388-391). New York, New York, USA.

Lu, Y. (2007a). Improving Data Consistency Management
and Overlay Multicast in Internet-scale Distributed
Systems. Ph.D. Dissertation, University of Nebraska-
Lincoln.

Lu, Y., Lu, Y. & Jiang, H. (2007b). IDEA: An Infrastructure
of Detection-based Adaptive Consistency Control. 16th
International Symposium on High Performance
Distributed Computing (pp. 223-224). Monterey, CA.

Lu, Y., Lu, Y. & Jiang, H. (2008). Adaptive Consistency
Guarantees for Large-Scale Replicated Services. 2008
IEEE International Conference on Networking,
Architecture and Storage, Chongqing, China.

Peterson, L. L., Anderson, T. E., Culler, D. E., & Roscoe, T.
(2003). A Blueprint for Introducing Disruptive
Technology into the Internet. Computer Communication
Review. Vol. 33, No. 1. 59-64.

Prakash, A. & Shim, H. S. (1994). DistView: Support for
Building Efficient Collaborative Applications using
Replicated Objects. ACM conference on computer
supported cooperative work. (pp. 153-164). Chapel Hill,
NC.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., &
Shenker, S. (2001). A Content Addressable Network.
ACM SIGCOMM (161-172). San Diego, CA.

Rowstron, A. & Druschel, P. (2001). Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems, IFIP/ACM International
conference on distributed systems platforms
(Middleware) (pp. 329-350). Heidelberg, Germany.

Schuckmann, C., Kirchner, L., Schummer, J., & Haake, J. M.
(1996). Designing Object-oriented Synchronous
Groupware with COAST. ACM conference on computer
supported cooperative work .(pp. 30-38). Cambridge,
MA.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., &
Balakrishnan, H. (2001). Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. ACM
SIGCOMM. (pp.149-160). San Deigo, CA.

Vogel, J. & Mauve, M. (2001). Consistency Control for
Distributed Interactive Media. ACM Multimedia. (pp.
221-230). Ottawa, Canada.

Yu, H. & Vahdat, A. (2000). Design and Evaluation of a
Continuous Consistency Model for Replicated Services,
4th conference on Symposium on Operating System
Design & Implementation. San Diego, California.

	1. Introduction
	1.1. Consistency retrieval vs. consistency maintenance
	1.2. CVRetrieval

	2. Background
	3. Design Issues
	3.1. The roles of IDEA and CVRetrieval
	3.2. Satisfying passive participants’ consistency needs on demand

	4. CVRetrieval Design
	4.1. A virtual white board scenario
	4.2. Participants join the system
	4.3. Mapping between participants and the IDEA infrastructure
	4.5. Communication between IDEA and publishers
	4.6. Choose subscribers for observers
	4.7. The publish-subscribe scheme

	5. Scalability of CVRetrieval
	5.1. Deno and IDEA
	5.2. Assumptions
	5.3. The Analysis
	5.3.1. Communication cost of Deno
	5.3.2. Communication cost of IDEA
	5.3.3. Communication cost of CVRetrieval
	5.3.4. The comparison

	6. Experimental Results
	6.1. Experiment setup
	6.2. Response time for writers
	6.3. Response time for observers
	6.4. Comparison to consistency maintenance protocols
	7. Future Trends
	8. Conclusions and Future Work
	References

