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Abstract

Consistency  control  is  important  in  replication-
based  Grid  systems  because  it  provides  QoS  
guarantee. However, conventional consistency control  
mechanisms incur high communication overhead and  
are ill suited for large-scale dynamic Grid systems. In  
this paper, we propose CVRetrieval (Consistency View 
Retrieval)  to  provide  quantitative  scalability  
improvement  of  consistency  control  for  large-scale,  
replication-based Grid systems. 

Based on the observation that not all participants  
are  equally  active  or  engaged  in  distributed  online  
collaboration, CVRetrieval differentiates the notions of  
consistency  maintenance  and  consistency  retrieval.  
Here, consistency maintenance implies a protocol that  
periodically  communicates  with  all  participants  to  
maintain a certain consistency level; and consistency  
retrieval  means  that  passive  participants  explicitly  
request consistent views from the system when the need  
arises  in  stead  of  joining  the  expensive  consistency  
maintenance  protocol  all  the  time.  The  rationale  is  
that it is much more cost-effective to satisfy a passive 
participant’s need on-demand. 

The evaluation of CVRetrieval is done in two parts.  
First, we analyze its scalability and the result shows 
that  CVRetrieval  can  greatly  reduce  communication  
cost  and  hence  make  consistency  control  more  
scalable.   Second,  a  prototype  of  CVRetrieval  is  
deployed  on  the  Planet-Lab test-bed  and  the  results  
show that  the active  participants  experience  a short  
response time at  expense  of  the passive participants  
that may encounter a longer response time. 

1. Introduction

A popular  strategy  to  improve  the  availability  of 
shared data in large-scale Grid systems is to replicate 
data  on geographically dispersed  nodes.  In  this way, 
participants can fetch the data from a nearby copy with 
improved  availability  and  response  time.  After 

retrieving  a  copy  to  the  local  node,  the  local  copy 
becomes a new replica of the data and can be used to 
serve  other  nodes’  need.  In  this  type  of  replication-
based  systems,  it  is  important  to  guarantee  the 
consistency  among  participants’  copies  of  the  same 
data to make collaboration meaningful. In  that sense, 
improved consistency among participants can improve 
participants’ perceived Quality of Service (QoS) of the 
application. 

There are two obstacles facing the design of a highly 
scalable consistency control mechanism for large-scale, 
replication-based Grid systems. First, large-scale Grid 
systems have a large number of nodes that  are  often 
geographically dispersed globally. Due to the network 
congestions and the inability to control remote nodes, 
maintaining even a relaxed consistency in such systems 
involves  formidable  communication  and  management 
cost. 

Second, large-scale Grid systems are often dynamic. 
I.e., nodes could join or leave the system at their will. 
With such dynamism, both the group of replicas  and 
that  of  the  nodes  are  interested  in  getting  a  replica 
keeps changing. Thus, any static—in the sense that the 
protocol fixed with certain replicas—is not suitable.

Current  consistency maintenance  mechanisms rely 
either on applying the same protocol on all participants 
or  is  based on the assumption that  the replica  group 
does not change. The former scheme is not scalable in 
large-scale  Grid  systems  because  it  induces  high 
communication  overhead  in  the  presence  of  a  large 
number  of  participants  (Cetintemel  2003).  The 
dynamic nature of large-scale Grid systems means the 
latter scheme is not suitable as well.

In  this  paper,  we  propose  a  new  low-overhead, 
hence  more scalable,  consistency control  architecture 
to address this limitation, thus improving the QoS from 
the  consistency  control’s  point  of  view.  This 
architecture  is  consistency  retrieval.  We  also present 
the  design,  implementation,  and  evaluation  of 
Consistent View Retrieval (CVRetrieval), a system that 
supports the consistency retrieval functionalities.



1.1.  Consistency  retrieval  vs. consistency 
maintenance

Consistency retrieval is in contrary to the notion of 
consistency  maintenance.   In  this  paper, consistency 
maintenance refers to the enforcement of consistency 
through communication among all the participants. The 
maintenance  cost  grows  with  the  number  of 
participants.  In  a  truly large  system,  the  consistency 
maintenance cost can be formidable. 

Consistency retrieval  reduces  maintenance cost  by 
reducing the number of participants that a consistency 
maintenance module needs to include. This approach is 
both doable and preferable in practice. This is doable 
because  not  all  participants  in  a  collaboration 
application are equally active or engaged. In a digital 
white board scenario where students listen to a lecture, 
for  example,  the  lecturers  are  more  likely  to  issue 
updates while a majority of the students are observers
—they  monitor  the  white  board  and  rarely  issue 
updates.  From  a  consistency  maintenance  point  of 
view,  the  lecturers  are  more  important  than  passive 
students.  So  there  is  really  no  need  to  consider  the 
passive  students  group  as  far  as  consistency 
maintenance  is  concerned  at  most  of  the  time.  The 
rationale is that, if a participant does not have intensive 
updating  activities,  it  is  far  more  cost-effective  to 
satisfy his or her needs on-demand. This approach is 
also  preferable  because  it  does  not  change  the  way 
most current consistency control protocol work. Thus it 
is easier to be adopted.  In this paper, we refer to this 
on-demand-based  consistency  control  mechanism  as 
consistency retrieval. 

It  is  noteworthy that,  while it  is  easy to  statically 
separate  passive  participants  from active  participants 
and only maintain consistency for active participants, 
CVRetrieval  is  significantly  different  from  such  an 
approach  in  two  aspects.  First,  CVRetrieval  is  not 
merely differentiating  active  and  passive  participants 
once  and  staying  with  a  fixed  differentiation 
permanently. Instead, differentiation in CVRetrieval is 
a  dynamic  one,  meaning that  the  active  and  passive 
participants are relative concepts and can change from 
time to time. The ability to capture this dynamics is a 
salient  feature  that  sets  CVRetrieval  apart  from any 
static  approaches.  Second,  CVRetrieval  assumes that 
passive  participants  do  occasionally  care  about 
consistency,  instead  of  assuming  that  they  are  not 
interested in the shared data1 at all.

1 We  use  the  term  “share  data”  and  “shared  object” 
interchangeably depending on the scenarios. 

Figure 1. The Relationship between CVRetrieval 
and IDEA

1.2. CVRetrieval

CVRetrieval  is  a  system  that  supports  the 
consistency  retrieval  functionalities.  CVRetrieval  is 
built on top of IDEA (Lu 2007b; Lu 2008), an efficient 
consistency  maintenance  protocol  proposed  by  the 
authors, as the consistency maintenance module.  The 
relationship  between  CVRetrieval  and  IDEA  is 
illustrated in Figure 1. 

The evaluation of CVRetrieval is done in two parts. 
First,  we  theoretically  analyze  the  scalability  of 
CVRetrieval  and  compare  it  to  other  consistency 
maintenance  protocols.  The  results  show  that 
CVRetrieval  can  greatly  reduce  communication  cost 
and  hence  make  consistency  control  more  scalable. 
Second, a prototype of CVRetrieval is developed and 
deployed  on the Planet-Lab  test-bed  (Peterson 2003) 
for  performance  evaluation.  The  results  show  that 
active participants in CVRetrieval have faster response 
times than in pure consistency maintenance protocols at 
the  slight  expense  of  passive  participants  that  can 
experience  longer  response  times  depending  on  the 
system setting,  although  the  retrieval  performance  is 
still reasonably efficient for the latter. 

The  rest  of  the  paper  is  organized  as  follows. 
Section  2  discusses  background  and  related  work. 
Section 3 discussed the design issues of CVRetrieval. 
The design of CVRetrieval is then presented in Section 
4.  Section 5 analyzes  the scalability improvement of 
CVRetrieval.  Section  6  experimentally  evaluates 
CVRetrieval based on a prototype deployed on Planet-
Lab.  Section 7 discusses future trends in consistency 
control research for large-scale Grid systems. Finally, 
Section  8  concludes  this  paper  and  discusses  future 
work.



2. Background 

Improving the scalability of consistency control has 
been a major research topic in distributed collaboration 
applications. 

Most collaboration applications nowadays originate 
from single-user applications. For example, MS Word 
was previously used by a single user to edit his or her 
file and is then modified to incorporate  collaboration 
capabilities.  A  straightforward  way  to  share  these 
applications is to place a central control for consistency 
maintenance.  In  MS  NetMeeting,  for  example,  only 
one participant  can operate  on the shared  object;  all 
other participants will be blocked (Begole 1999). 

To prevent blocking, which causes access delay, the 
granularity  of  sharing  is  often  adjusted  to  make the 
sharing unit small enough to prevent blocking to some 
extent.  However,  this  approach  is  inherently  not 
scalable for two reasons. First, for any given system, 
the granularity cannot be spited indefinitely. Second, it 
is still a centralized system and, in the presence of an 
active unit, the blocking cannot be prevented and that 
makes it  not  suitable for  a  large-scale system with a 
large number of participants. 

Newly  developed  distributed  online  collaboration 
applications use replication-based scheme to improve 
scalability and availability.  As all the replicas have a 
copy  of  the  collaboration  application,  inconsistency 
level  among  them  hence  is  relaxed  (Prakash  1994; 
Schuckmann 1996). While this scheme works well in 
many applications and helps distributed collaboration 
applications scale  to large-scale distributed networks, 
relaxed consistency does not provide QoS guarantee. 

Recently,  researchers  have  been  trying to  achieve 
relaxed  yet  bounded  inconsistency  for  distributed 
online  collaboration  applications.  Yu  and  Vahdat 
defined metrics to evaluate consistency level for a wide 
range of applications (Yu 2000). Chang et. al. derived 
an algorithm to support different consistency level for 
different  users  in  an  online  conference  application 
(Chang  2002).  Also,  Local-lag  and  Timewarp  were 
developed by Vogel and Mauve to eliminate short term 
inconsistencies and repair  inconsistency,  thus prevent 
unbounded  inconsistencies  (Vogel  2001).  A  more 
recent  work  extended  Vogel  and  Mauve’s  work  by 
considering the same problem in a larger network (Li 
2004). However, these works are still use consistency 
maintenance  for  all  participants,  which  cause  high 
overhead  for  a  system  with  a  large  number  of 
participants. 

CVRetrieval differs from previous work in the sense 
that  it  considers  the consistency  retrieval aspect,  not 
just  consistency  maintenance.  To  the  best  of  our 

knowledge, CVRetrieval is the first work to explicitly 
consider the retrieval aspect of consistency control in 
distributed online collaboration applications. 

3. Design Issues

CVRetrieval has two design issues. First, we need to 
differentiate  different  roles  of  CVRetrieval  and  the 
conventional  consistency  maintenance  protocol. 
Second, we need to define a procedure for CVRetrieval 
to  satisfy  passive  participants’  consistency  needs  on 
demand. 

3.1. The roles of IDEA and CVRetrieval

IDEA achieves efficient consistency maintenance by 
detecting and  resolving inconsistencies  among active 
writers  more  frequently  than  passive  participants,  in 
which active writers are dynamically tracked by IDEA. 
To reduce the number of nodes maintained by IDEA, 
CVRetrieval only lets IDEA handle active participants 
who are actively updating their replicas. 

3.2.  Satisfying  passive  participants’ 
consistency needs on demand

Since  CVRetrieval  does  not  actively  maintain 
consistency for passive participants who may need to 
access  their  replicas  occasionally,  CVRetrieval 
provides a way for these passive participants to access 
consistent  objects  when  the  need  arises.  From  the 
passive participants' point of view, the only thing that 
they  need  to  know  is  where  to  find  a  consistency 
object.  In  IDEA,  any  active  writer  can  provide  a  
consistent  object.  So  CVRetrieval  just  has  to  inform 
passive writers about this active writers’ information. 

CVRetrieval  deploys  a  publish-subscribe 
infrastructure  (Banavar  1999)  to  publish  the  active 
writers information to the passive participants. In this 
way,  CVRetrieval  satisfies  passive  participants’ 
consistency  needs  with  an  on-demand  fashion. 
Moreover,  CVRetrieval  chooses  publishers  and 
subscribers  in a  way to  capture  the common interest 
among participants.  In  this  way,  passive  participants 
associated with the same subscriber can help each other 
without fetching data from publisher all  the time. As 
we will see in Section 6.3, exploiting common interest 
greatly improves the scalability of CVRetrieval. 

4. CVRetrieval Design

We try to address several design issues here: 



• How do participants join the system and how to 
map the participants to the IDEA infrastructure? 

• What is the workflow of CVRetrieval?
• How  does  IDEA  communicate  with  the 

publishers  so  that  the  publishers  have  the 
updated information of the top layer nodes (that 
includes all active writers) for different object? 

• How to choose subscribers for observers? 
• How does the publish-subscribe scheme work?  

Throughout  this  section,  we  use  a  virtual  white 
board application to make the discussion concrete.

4.1. A virtual white board scenario

We consider a distance education scenario in which 
several lecturers give lectures and a group of students 
join  the  discussions  by  manipulating  a  virtual  white 
board (logically centralized and physically distributed 
on each participant’s site). Other students who are not 
part of the discussion group will passively observe the 
discussion by watching the virtual white board. 

In this scenario, the lecturers and the students in the 
discussion group conduct active discussions by issuing 
updates  on  the  white  board.  Due  to  the  nature  of 
discussion, not all the members in the discussion group 
will speak up at the same time. During the discussion, 
membership  of  the  active  white-board-based  speaker 
group  will  change  constantly,  and  such  change  is 
usually  unpredictable  because  the  spontaneity  of  an 
active discussion. 

4.2. Participants join the system

We  assume  that  there  is  a  mechanism  for 
participants to know the ID of the white board session 
and the time when the session starts. In practice,  this 
can be done by some offline method, such as through 
an email list. 

After all the participants log in, they form a group. 
Each participant modifies his or her own white board 
and those updates will show on others’ white boards. 

4.3.  Mapping  between  participants  and  the 
IDEA infrastructure

As  illustrated  in  Figure  2,  we  differentiate  three 
types  of  participants:  active  writers,  passive  writers, 
and observers. They are mapped to IDEA as follows.

First,  CVRetrieval  differentiate  observers  from 
writers.  When  participants  log  in  the  white  board 
application, they are required to indicate whether they 
are members of the discussion group. If yes, they are 

Figure 2: Three classes of participants

characterized as writers that are handled by IDEA; if 
no, they are classified as observers that are handled by 
CVRetrieval.  

Second,  IDEA  differentiates  active  writers  from 
inactive writers after  the system starts  to run using a 
two-layer structure. IDEA tracks active writers (by its 
top  layer)  and  passive  writers  (by the  bottom layer) 
based on frequency of their updating activities.  

4.4. The Workflow

    Figure  3  shows  the  workflow  of  the  publish-
subscribe mechanism as well as the retrieval process.
    The basic publish mechanism is shown in Figure 3.1. 
In step 1, the active writers notify publisher about their 
presence; in step 2, a publisher notifies its subscriber 
about the up-to-date active-writer group; finally, in step 
3, a subscriber notifies its clients (the observers) about 
the active-writer group.
    A client can issue an on-demand retrieval request, as 
shown in Figure 3.2.  In  step 4,  an observer  issues a 
retrieve request to its subscriber. If the subscriber has a 
valid cache, it will return the local copy to the observer 
(step 7); otherwise, it requests a consistent view from 
one of the active writers (step 5) and, after receiving 
the view (step 6),  it  returns the copy to the observer 
(step 7) and caches the view locally.
    An observer can also indicate his or her preference 
to retrieve a consistent view periodically. In this case, 
the observer does not need to explicitly issue a retrieval 
request  on-demand.  As  shown  in  Figure  3.3,  this 
process is similar to that in Figure 3.2 except that there 
is  no  step  4,  and  steps  5  through  7  are  executed 
periodically.
    If  the  subscriber  is  already overwhelmed by the 
retrieval  requests  or  publishing,  there  is  no  point  of 
sending more retrieval request to it, and that is where 
the  active-writer  group  information  received  by 
observers  in  step  3  comes  into  play.  As  shown  in 
Figure 3.4,  an observer  can use its knowledge of the 
active-writer group to contact a nearby active writer 
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Figure 3: Workflow of CVRetrieval

directly (step 8 and 9). As an optional step, the active 
writer can forward a copy to the subscriber so that the 
subscriber will have a fresh copy as long as it is able to 
handle more requests again (step 10).
    Finally, the complete process is illustrated in Figure 
3.5. We will discuss the key components of the process 
in more details in the rest of this section. 

4.5.  Communication  between  IDEA  and 
publishers

     In  CVRetrieval,  each  object  has  a  designated 
publisher,  which is responsible for publishing the top 
layer  nodes’  information  on  behalf  of  the  objects. 
There are two issues here: (1) how to map an object to 

a publisher? (2) how do publishers learn the top layer 
nodes’ information from IDEA?

There are two ways to map an object to a publisher 
based  on  the  total  number  of  shared  objects.  If  the 
number of  shared  objects  is  small  in an  application, 
such  as  in  the  white  board  application,  the  shared 
objects  can  be  mapped  to  a  single  publisher.  If  the 
number of  shared  objects  is  large,  such  as  in  online 
gaming,  certain  mechanism  is  needed  to  balance 
multiple  publishers’  load.  Hash-table-based  scheme 
(choose  publishers  based  on the hashed value of  the 
object  IDs),  such as  Distributed  Hash Tables  (DHT) 
(Ratnasamy 2001; Rowstron  2001; Stoica  2001),  is 
desirable for both its load balancing and its easy lookup 
(subscribers  can  find  the  right  publishers  by  simply 
hashing the object IDs). 



The  publishers  learn  the  top  layer  nodes  through 
communication  with  them.  From  the  mapping 
procedure, the top layer nodes of an object know where 
their corresponding publisher is. The top layer nodes 
will communicate with their publisher whenever a node 
joins or leaves the top layer. The publisher will publish 
these updates to its subscribers subsequently.

However,  this  published  information  may become 
obsolete due to the propagation delay.  For example, a 
subscriber could have old information (it states that  A 
is in the top layer of object f but A is in fact no longer 
in the top layer anymore). We use pointers to solve this 
problem. In an example illustrated in Figure 4, we let A 
keep two pointers of its fellow members when it is in 
the top  layer  of  object  f (left  half  of  Figure  4)  and, 
when  A is  no longer  in the top layer,  it  can at  least 
forward the request to the other top layer nodes (B or C 
in this case, see the right half of Figure 4). Because it is 
very unlikely that  all  three nodes are leaving the top 
layer during the time of the propagation delay, this kind 
of old information will be transparent to users. In the 
case that this mechanism does not work, the request can 
always  be  returned  back  to  the  subscriber,  who can 
then pull updated information from the publisher (see 
Section 4.7). 

4.6. Choose subscribers for observers

While there are many ways to choose subscribers, 
we  use  ISPs  (Internet  Service  Providers)  of  the 
observers,  rather  than some observers  themselves,  as 
the  subscribers  for  two  reasons.  First,  the  ISPs  are 
much  more  stable  than  their  clients  (i.e., observers) 
because of their status as Internet entry point. Hence, 
using  ISPs  as  the  subscribers  makes  the  publish-
subscribe structure (i.e. the positions of publishers and 
subscribers)  much more stable.  Second,  while clients 
change their interests rather frequently,  which—if we 
use  clients  as  subscribers—causes  frequent 
membership change for a publisher and the publisher 
that  in turn needs to  adjust  its  publishing scheme to 
reflect that change, ISPs’ interests are relatively stable 
because their  interests do not  change with respect  to 
how many and which clients are interested in an object, 
as long as some client is interested in that object. 

When a client  becomes interested  in an object,  it 
informs  its  ISP,  which  will  subscribe  the  object’s 
information if it hasn’t done so. If the ISP has already 
subscribed for that object, it will just add the client into 
its client list and inform the client about all the future 
updates  about  that  object’s  top  layer  nodes.  When a 
client is not interested in an object anymore, it informs 
its ISP too. If, after this client’s exit, the ISP has no 

Figure 4. Use pointers to handle stale information

client  for  that  object,  it  will  unsubscribe  this object; 
otherwise, it deletes the client from its client list.  
    A  subscriber  has  two  responsibilities.  First,  it 
informs a publisher to periodically push new updates to 
it at a predefined rate and, when a new update arrives, 
immediately forwards the update to its clients. Second, 
when  a  client  is  in  need  of  a  consistent  view 
immediately, the client can explicitly ask the subscriber 
to retrieve the view on its behalf. When a subscriber 
receives the retrieval  request,  it  either returns a view 
from its cache (if it has one because other clients have 
just  retrieved it  before)  or retrieves the view directly 
from the writer. 

4.7. The publish-subscribe scheme

As shown in Figure 3, we use a multicast tree and 
filters  to  sent  information  from  publishers  to  their 
subscribers.  In  this  scheme,  each  publisher  builds  a 
multicast tree and an interior node forwards the packets 
further down the tree only if there are some nodes in its 
subtree that have subscribed it. 

In the naïve form, the publisher sends all the active 
writers’ information down the tree structure and all the 
subscribers will receive that information. To improve 
the  system’s  scalability  and  efficiency,  CVRetrieval 
incorporates the following optimizations.

First, a publisher in CVRetrieval only sends a subset 
of the list of the top layer nodes to each subscriber to 
preserve  the  network  bandwidth.  This  raises  two 
questions:  how  to  choose  a  subset  for  a  given 
subscriber and how to disseminate different subset of 
top-layer node information through a multicast tree?

When choosing the subset, the publisher has several 
factors  to  consider.  First,  the  active  writers  in  the 
subset should be physically close to the subscribers so 
that the retrieval can be done efficiently. Second, one 
or two remote active writers can be included in each 
subset to provide redundancy because physically close 
machines  tend  to  go  down  at  the  same  time  (for 
example, a power outrage). Third, the publisher needs 
to  consider  load  balance  so  that  no  active  writer  is 
overwhelmed by retrieval requests.



Now we illustrate how to disseminate the different 
subsets via a multicast tree. First of all, the subscribers 
report their physical locations to the root in a bottom-
up fashion  and  the  messages  are  aggregated  at  each 
interior node. Second, the publisher chooses different 
subsets for its immediate children in the multicast tree 
based  on these  children’s  subtree’s  interests  (i.e.  the 
collective interest of the nodes in its children’s subtree) 
and disseminate the subsets. For each interior node, it 
further  divides  the  subset  for  its  own  immediate 
children. This process continues until the leave nodes 
are reached. 

5. Scalability of CVRetrieval 

In this section, we compare the communication cost 
of the CVRetrieval with two consistency maintenance 
protocols—Deno  and  IDEA—because  these  two  are 
the  most  similar  approaches  to  CVRetrieval.  Due  to 
page  limit,  interested  readers  are  referred  to  Chapter 
5.3  of  (Lu  2007a)  for  a  full  discussion  about  the 
rationale behind this comparison. 

5.1. Deno and IDEA

Deno  (Cetintemel  2003) is  a  peer-to-peer  voting 
protocol  in which each writer’s update travels across 
the  whole  replica  group  to  detect  and  resolve  any 
inconsistency.  During  Deno’s  serialization  process, 
further updates are allowed but their updates need to be 
serialized  at  a  single point  to  maintain a  consistency 
state. 

IDEA is a detection-based consistency maintenance 
protocol  for  large-scale  distributed  systems proposed 
by the authors. Instead of enforcing a fixed consistency 
protocol  beforehand,  IDEA  detects  inconsistencies 
when  they  arise  and  resolve  them  based  on  the 
applications’ ongoing need for consistency. 

In  this  analysis,  we assume that  all  the  protocols 
incur the same average message size and, on average, 
each  message  travels  the  same  distance.  Hence,  the 
differentiator of  the protocols is the total  number of  
messages incurred by each protocol.

5.2. Assumptions

In this analysis, we make the following assumptions 
and definitions. 

[1] c:  the  average  number  of  simultaneous 
writers. 

[2] n: the total number of nodes in the system that 
join the consistency control process. 

[3] n1: number of writers. 
[4] nhot:  number  of  active  writers  among the  n1 

writers. 
[5] f1: number of updates of active writers during 

a given period of time t.
[6] npass:  number of passive writers among the  n1 

writers, where nhot + npass = n1.
[7] f2:  number  of  updates  of  passive  writers 

during a given period of time t.
[8] n2: number of observers, where n2 = n – n1. 
[9] p: total number of publishers in CVRetrieval.
[10] s: total number of subscribers in CVRetrieval.
[11] q1: number  of  publishings  during  a  given 

period of time t.
[12] q2: number of retrievals during a given period 

of time t.
[13] C_deno: total number of messages exchanged 

in Deno.
[14] C_idea:  total number of messages exchanged 

in IDEA. 
[15] C_r:  number  of  messages  exchanged  in 

CVRetrieval.

5.3. The Analysis

In this analysis, we consider the consistency control 
for  one  single  object  because  this  simplifies  the 
analysis and, based on the result, it is easy to extend the 
analysis to multiple objects. 

5.3.1. Communication cost of Deno

In Deno, each update travels the whole group and, 
when it  meets  another  conflicting update,  the update 
will be resolved at that time. In this analysis, each time 
an  update  reaches  a  node,  we consider  it  as  a  new 
message because  the node  that  is  reached  essentially 
regenerates the original message by relaying it. Thus, 
given an update, it only stops traversal when it meets 
another conflicting update. From the assumption 1, we 
know that there are c conflicting updates in the system 
at  one  time  on  average.  For  simplicity,  we  further 
assume  that  the  updates  propagate  along  a  linear 
structure (without this assumption, the updating process 
becomes  intractable).  Then,  on  average,  an  update 
travels 1/c of the network to meet a conflicting update 
and stops. 

Now  we  calculate  the  communication  cost  as 
follows. Because there are n nodes in the system, each 
update needs to travel  n/c hops,  which equals to  n/c 
messages in total.  In a given period of time t, there are 
nhot*f1 +  npass*f2 updates,  so  the  total  number  of 
messages generated in a given period of time t is:
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5.3.2. Communication cost of IDEA

In  IDEA,  the  updates  from active  writers  will  be 
detected among the active writers and those from the 
passive  writers  will  need  to  go  through  the  whole 
network to be detected. 

Similarly to  the analysis  in  Deno,  we assume the 
existence  of  c concurrent  conflicting  updates  at  one 
time. However, in the case of IDEA, the updates from 
active writers stay at  the top layer,  implying that  the 
active  writers  actually  see  less  than  c concurrent 
updates because the updates from passive writers won’t 
show up in the top layer at the same time. So, while 
passive  writers  still  see  c concurrent  updates,  we 
assume that the active writers sees only chot concurrent 
updates, where chot < c. Then an update from an active 
writer will generate  nhot/chot messages, and that from a 
passive  writer  will  generate  n/c messages.  There  are 
nhot*f1 updates from active writers and  npass*f2 updates 
from passive writers in a given period of time t. 

For  the  communication  cost  associated  with 
observers, we follow the calculation used in the Deno 
case and conclude that the overhead is two messages 
(one for request, one for reply) for each retrieval type 
request.  Then,  because  we  have  assumed  that,  on 
average, each observer will issue q2 requests in time t, 
the total communication overhead is 2*n2*q2. 

Putting  the  communication  cost  of  writers  and 
observers together, the communication cost of IDEA is:

2221 2_ qnfn
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           (2) 

5.3.3. Communication cost of CVRetrieval

The  communication  cost  of  CVRetrieval  involves 
three parts:  (1)  the detection of inconsistency among 
active and passive writers; (2) the cost associated with 
the  publish-subscribe  scheme,  which  includes  the 
communication  cost  between  writers  and  publishers, 
between  publisher  and  subscriber,  and  between 
subscribers  and  their  clients;  and  (3)  the  retrieval 
operation for observers.  

First,  CVRetrieval  detects  inconsistency  among 
active writers in the same manner with that of IDEA 
because it depends on IDEA to maintain consistency. 

Thus the communication cost incurred by active writers 
is  (nhot/c)*nhot*f1. For  passive  writers,  however,  they 
need not to go through the whole network; instead, they 
only need to detect among the writers’ group (with n1 

writers)  that  excludes  the  observers.  Thus,  the 
communication cost associated with the updates from 
passive writers is (n1/c)*npass*f2.
     Second, for the communication cost associated with 
publish-subscribe scheme, we first derive the cost for 
one round of publish and then multiply it by the publish 
rate  q1 to get the total communication cost in a given 
period of time t. Because an active writer only notifies 
its  publisher  when  it  becomes  an  active  writer  and 
when  it  becomes  a  passive  writer.  Here  we 
conservatively assume that,  in one  round of  publish, 
half of the active writers are new ones (this is indeed a 
very extreme scenario because we essentially assume 
50% of the active writers leave the group and the same 
number of new active writers join the group). Thus, in 
one round of publish, there are nhot messages exchanged 
between writers and publishers because each old active 
writer or new active writer needs to inform exactly one 
publisher. 
    Then,  there  are  s messages  exchanged  between 
publisher  and  subscribers  because  there  are  s 
subscribers  in  total  and  each  needs  to  be  informed 
exactly once. Finally, let’s conservatively assume that 
all the n2 observers will need to be informed about its 
subscription.  Then  we  know  that  n2 messages  are 
exchanged in one round. Adding the three parts of cost 
together and then multiplying the publishing frequency, 
we get the total communication cost associated with the 
publish-subscribe scheme in time t is q1*(nhot+s+n2).

Third, each observer will retrieve a consistent view 
for the object he or she is interested in, which results in 
n2 retrievals.  Because  each  retrieval  consists  of  two 
messages  (one  request,  one  reply),  there  are  2*n2 

messages exchanged in one retrieval operation. Finally, 
because  we  assume  that  each  observer  retrieve  q2 

consistent views in time t, the total number of message 
exchanged in t is 2*q2*n2. 

So the total communication cost in a given period of 
time t, incorporating all three parts, is:
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                                                                            (3)
     Note that parameter s is related to n2 because there 
are s subscribers serving the n2 clients (recall that each 
observer subscribes k objects). Although there is no 



Sets n n1 nhot c chot f1 f2 q1 q2 s Deno IDEA CVRetrieval
1 1000 50 10 4 3 5 3 2 5 19 42500 39667 13125
2 1000 100 20 4 3 5 3 2 5 18 85000 69667 17543
3 1000 200 50 4 3 5 3 2 5 16 175000 124667 36399

Table 1: Analytical Results

ground rule about how many clients a subscriber should 
have, it is intuitive that the number of clients should not 
overwhelm  the  subscribers.  Considering  that  the 
information  that  is  being published  is  rather  small  in 
quantity  (it  is  only  a  list  of  active  writers  and  the 
message  is  maybe  only a  few KBs),  we believe  that 
each subscriber should support at least up to 50 clients, 
which incurs less than 1MB data traffic and should not 
be  a burden  for  a  subscriber.  Thus,  in  the  following 
analysis, we use n2 /50 as the value for s.
    Further,  the  value  of  q1 is  associated  with  how 
frequent  the  active  writer  group  changes  and  q2 is 
associated  with  the  observers’  interests.  Because 
CVRetrieval  deals  with  loosely  coupled  distributed 
online collaboration applications, we believe that, in a 
short period time of  t, it is sufficient to assign a small 
numerical value for q1. For q2, we believe that it should 
be reasonably large so that it can satisfy observers’ need 
of  consistent  view.  However,  q2 cannot  be  too  large, 
which implies smaller inter-retrieval time, because there 
is  no  point  of  issuing  the  second  retrieval  before 
response  of  the  first  request  has  arrived.  Thus,  we 
believe that it should be reasonable to make q2 two to 
three times as large as q1. 

5.3.4. The comparison

    In this comparison, we first do an asymptotic analysis 
to compare the overall growth rate of Deno, IDEA, and 
CVRetrieval.  Since  the  asymptotic  analysis  is 
approximate in nature, we then use a sensible setting of 
the  parameters  to  calculate  and  compare  the  three 
protocols.
    We conduct the asymptotic analysis as follows. In the 
equation 1 for the communication cost of Deno, n1 and 
n2 are fractions of  n, so  n1 and  n2 grows as fast as  n. 
Then, f1 and f2 are updates in a period of time and is not 
supposed to be a large number and won't grow with n, 
so we can safely treat them as rough constants. Hence, 
the cost of Deno would be O(n2).
    For the analysis of the communication cost of IDEA, 
we follow the analysis the same way as that of Deno—
n2 have  similar  growth  as  n,  f1 and  f2 are  more  like 
constant.  Then, from equation 2,  the cost  of IDEA is 
O(n2 + n),  which is also  O(n2).  Similarly,  the cost of 
CVRetrieval, derived from equation 3, is also O(n2). 

    The  main  message  here  is  this,  while  there  are 
differences  in  the  communication  cost  among all  the 
three protocols, the difference is not an exponential one. 
This makes sense because all three protocols, to some 
extent,  depend  on  intercommunication  of  a  group  of 
nodes,  which  results  the  O(n2) result.  The  real 
difference  is  how large  the  group  is—the  larger  the 
group, the more communication cost will be incurred. 
From this aspect, Deno has the largest group (the whole 
system), IDEA has a smaller number (only for the group 
of active writers). CVRetrieval has the same group size 
as that of IDEA but has a much smaller size of passive 
writers,  hence  achieving  the  smallest  communication 
cost.

We  now  proceed  to  the  second  step  of  this 
comparison by comparing C_deno, C_idea, and C_r by 
assigning  real  numbers  to  the  parameters  in  their 
respective  expressions.  Based  on  the  logic  presented 
earlier, we set s = n2/50 and assign 2 and 5 to q1 and q2, 
respectively. We also set chot as 3*c/4, which is actually 
quite  conservative and put IDEA and CVRetrieval  in 
disadvantage  considering  that  most  updates  should 
come from active  writers.   The  analytical  results  are 
summarized in Table 1.

As  shown  in  Table  1,  CVRetrieval  incurs  much 
lower  communication  cost  than  pure  consistency 
maintenance  protocols  in  all  three  sets  of  data.  This 
observation  indicates  that  the  majority  overhead  of 
CVRetrieval  comes from the consistency maintenance 
of  writers,  which  validates  our  hypothesis  that,  by 
separating  observers  from  writers,  the  consistency 
control overhead can be substantially reduced. 

Additionally, the overhead of CVRetrieval increases 
in a slower speed than those of Deno and IDEA when 
the  number  of  updates  increases  (reflected  by  the 
number of active writers). Comparing the results of set 
1  and  set  3  and  we  can  see  that  the  overhead  of 
CVRetrieval in set 3 is 2.8 times as large as that in set 
1, while that ratio is 4.1 for Deno and 3.1 for IDEA. We 
believe that this is an indication that CVRetrieval scales 
better than the other two methods. 

6. Experimental Results

We have implemented  a prototype  of  CVRetrieval 
on top of the Planet-Lab  (Peterson 2003). We use this 



prototype to evaluate the performance of CVRetrieval. 
The metric we use is response time. 

For  a  consistency  maintenance  protocol,  the 
response time is defined as the time difference between 
the point when an update of an object is first committed 
and that when a participant receives that update (with a 
certain level of consistency guarantee).  In  the case of 
CVRetrieval, the response time has different definition 
for writers and observers.  For writers, the definition of 
response  time  is  the  same  as  that  in  a  consistency 
maintenance protocol.  For  observers  in CVRetreivals, 
however, the response time is between the point of time 
when  an  observer  issues  a  retrieval  request  for  a 
consistent view of an object and that when it receives 
the view. 

6.1. Experiment setup

     We emulate a white board application for evaluation 
purposes.  The application is emulated by following its 
operational  sequences.  Further,  we assume that  these 
updates are all  conflicting with one another.  A writer 
informs its publisher when it becomes or ceases to be an 
active writer. The publisher then informs its subscribers 
(the  ISPs  who  subscribe  on  behalf  of  their  clients) 
periodically. Observers specify their interest and inform 
their subscribers about that. 
   In  the current  setting,  there  are  ten writers  among 
which  four  are  active  writers  and  the  other  six  are 
passive  ones.  There  are  one  publisher  and  four 
subscribers. Each subscriber serves three observers. In 
other  words,  this  is  a  22-nodes  system,  excluding 
publisher  and  subscribers.  At  the  beginning  of  the 
experiment, each active writer issues one update every 5 
seconds until  the experiment ends.  These updates got 
disseminated  among  active  writers  immediately  and, 
once it starts to propagate to passive writers, each hop 
will only disseminate the updates once every 5 seconds. 
Each  observer  retrieves  the  consistent  view every 20 
seconds. The experiment runs 300 seconds.  

We  also  implemented  a  Deno-like  protocol  for 
comparison. In the Deno-like protocol, we organize the 
22 participants (here,  we don’t consider the publisher 
and  subscribers  as  participants  because  they are  only 
facilitating CVRetrieval) in a linear fashion in which the 
updates are propagated from one to the other. To make 
the results  comparable,  we assume the same updating 
patterns for the ten writers. 

6.2. Response time for writers

    We measure response times for active writers and 
that for passive writers. The experiment was run ten

Type Max 
(seconds)

Min 
(seconds)

Average 
(seconds)

active writer 1.73 1.41 1.59
passive writer 11.8 10.2 10.98

Table 2: Response time for writers

times  and  the  average  response  time,  as  well  as 
maximum  and  minimum  values,  are  measured  and 
shown in Table 2. 

From the result, we can see that the response time of 
active  writers  is  very  small.  This  is  because  the 
dissemination  of  updates  is  instant  among  active 
writers.  While it  is usually very costly to disseminate 
update  instantly among participants,  CVRetrieval  can 
afford to do so because, via classification, there are only 
a relatively small number of active writers in existence. 

As shown here, the average delay for passive writers 
is over 10 seconds, which looks rather high. However, 
this is because we set a five-second delay between the 
dissemination  of  updates  among  passive  writers.  In 
practice,  system  administrators  can  choose  a  shorter 
delay to improve the response time for passive writers 
at the expense of increased bandwidth overhead. 

6.3. Response time for observers

There are two aspects of response time for observers. 
First,  the  time  that  it  takes  for  them to  receive  the 
periodically  published  updates.  Because  this  part  of 
delay primarily depends on the publishing rate, we do 
not measure it  here.  Second, the response time for an 
explicit  retrieval  operation,  i.e. when  the  observers 
actively  retrieve  the  most  updated  view  from  the 
subscribers, the time it takes to get the view. 

The delay of explicit retrieval  depends on whether 
the observer can find the view in its subscriber’s local 
cache  (because  another  observer  retrieved  the  same 
view a moment ago). Intuitively, the more retrievals can 
be satisfied with the subscriber’s cache (a higher cache 
hit  rate),  the  smaller  the  response  time  is.  In  this 
experiment, we give three settings of the cache hit ratio: 
50%,  66.7%,  and  75%.  For  each  setting,  we run  ten 
experiments and the results are summarized in Table 3.

The result shows that the retrieval process is indeed 
very efficient and this efficiency increases with cache 
hit rate in subscribers.  

6.4.  Comparison  to  consistency  maintenance 
protocols

    We now compare the performance of CVRetrieval 
with a  pure  consistency maintenance  protocol.  For  a 



pure consistency maintenance protocol, we assume that 
all  participants  are  treated  equal.  In  terms of updates 
dissemination,  there  are  two  types:  active  ones  that 
disseminate a received update to other  participants as 
soon as it arrives and passive ones that only periodically 
disseminate all the updates it received so far. Because 
the  passive  ones  work  similarly  to  the  way 
CVRetrieva/IDEA treats passive writers, but with more 
participants, it is doubtless that CVRetrieval/IDEA will 
have  a  better  performance.  For  this  reason,  we only 
experimentally compare CVRetreival to the active ones. 
     The  consistency  maintenance  protocol  we 
considered here has all the 22 participants we used in 
the  CVRetrieval  evaluation.  Because  this  protocol 
actively disseminates updates, each participant relays a 
received update as soon as it  is received.  Finally,  the 
writers have the same updating patterns as in previous 
experiments. We run this experiment ten times and the 
results are shown in Table 4.
    From this table, we can see that the response time of 
the  pure  maintenance  protocol  is  larger  than  that  of 
CVRetrieval’s active writers (comparing to the data in 
Table 2). However, the absolute value of the response 
time is not that large. We suspect that is because, due to 
the heavy load of Planet-Lab nodes, the write operation 
alone needs too much time to be committed. To validate 
our  hypothesis,  we profile  one run of  the experiment 
with  the  pure  consistency  maintenance  protocol  and 
record  the  response  time for  all  21  participants  (this 
does not include the writer who committed this update) 
and the result is depicted in Figure 5. 

From this figure, we can clearly see that the first hop 
delay  dominates  the  system’s  response  time.  With 
greater computing power that can minimize the cost of 
committing  updating  operations,  we  expect  the 
advantage  of  the  CVRetrieval  approach  to  be  much 
more obvious. 

It  is  worth noting that  most current  protocols uses 
passive  update  dissemination method,  with which the 
advantage  of  CVRetrieval  will  become  more 
pronounced. Furthermore, the most important advantage 
of  CVRetrieval  is  its  saving  of  communication  cost, 
especially  in  a  system  with  a  large  number  of 
participants, as analyzed in Section 5. We believe that 
the  two features—efficiency and  scalability—together 
make  CVRetrieval  a  viable  alternative  to  pure 
consistency maintenance protocols. 

7. Future Trends

As  Grid  computing  becomes  a  key  enabling 
technology  for  large-scale  collaboration  application, 
quantitatively guaranteeing its QoS will become more 

Cache hit
rate

Max 
(seconds)

Min 
(seconds)

Average 
(seconds)

50% 0.48 0.33 0.37
66.7% 0.3 0.24 0.28
75% 0.16 0.12 0.14

Table 3: Response time for observers

Max 
(seconds)

Min 
(seconds)

Average 
(seconds)

2.45 1.77 2.07

Table 4: Response time of a pure consistency 
maintenance protocol with active update 

dissemination

Figure 5: Response time for different hops

and more  important.  In  terms of  consistency control, 
advances in QoS will, based on the authors’ opinion, be 
on two fronts: scalability and reliability. 

Scalability refers to a protocol’s ability to scale to a 
large number of geographically dispersed nodes. With 
the  size  of  Internet  keeping  increasing,  it  becomes 
necessary for the Grid systems to maintain a meaningful 
consistency among different  nodes  while  at  the  same 
time  imposing  very  low  communication  overhead. 
Without this ability, practitioners will face a dilemma: 
either accept poor QoS in order to run the system in a 
large scale, or achieve high QoS at the expense of not 
cooperating with remote nodes. CVRetrieval presented 
in this paper is one way to improve scalability.  Other 
alternatives are certainly possible. 

Reliability refers to the robustness of a protocol. As 
Grid  becomes  an  essential  computing  platform upon 
which numerous applications run, it  is essentially that 
any  key  component  of  the  Grid  itself,  including 
consistency control, is resilient to frequent packet delay/
loss  and  node  failure.  In  this  respect,  any  new 



consistency  control  protocols  will  need  to  explicitly 
consider  packet  delay/loss  and  node  failure  in  the 
design phase. Reliability in CVRetrieval depends on the 
robustness of the publish/subscribe infrastructure. It  is 
interesting  to  see  other  alternatives  that  can  provide 
even stronger and low overhead reliability guarantee. 

8. Conclusions and Future Work

In  this  paper,  we  presented  the  design,  analysis, 
implementation,  and  evaluation  of  CVRetrieval,  a 
system  that  improves  the  scalability  of  consistency 
control in large-scale, replication-based Grid systems by 
separating  consistency  retrieval  from  consistency 
maintenance. 

CVRetrieval is fully evaluated by both analysis and 
prototyping. The analysis result showed that, comparing 
to pure consistency maintenance protocols, CVRetrieval 
incurs  significantly less  communication  overhead  and 
hence improves the scalability of consistency control in 
general.  Through  prototyping  on  the  Planet-Lab  test-
bed, we evaluated the response time of CVRetrieval and 
the results showed that CVRetrieval achieves a sensible 
tradeoff: it achieves shorter response times for writers at 
the expense of a longer response time for observers and, 
more importantly, improves the system’s scalability as a 
whole. 

In the future, we plan to improve the scalability and 
performance  of  CVRetrieval  further  through 
optimization. For example, we can drive active writer 
information  towards  the  most  needed  subscribers  by 
controlling the publishing rates along different paths. In 
such a scenario,  the subscribers (the ISPs)  will report 
their interests (in terms of frequency of issued requests) 
to  the publisher,  which in turn adjusts  the publishing 
rates by publishing at a higher rate to a path that can 
reach  subscribers  that  reveals  higher  interest  than 
others. 
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