
IDEA: An Infrastructure for Detection-based Adaptive Consistency Control
in Replicated Services

Yijun Lu, Ying Lu, and Hong Jiang
Department of Computer Science and Engineering

University of Nebraska-Lincoln
{yijlu, ylu, jiang}@cse.unl.edu

Abstract

In Internet-scale distributed systems, replication-
based scheme has been widely deployed to increase the
availability and efficiency of services. Hence,
consistency maintenance among replicas becomes an
important research issue because poor consistency
results in poor QoS or even monetary loss. Recent
research in this area focuses on enforcing a certain
consistency level, instead of perfect consistency, to
strike a balance between consistency guarantee and
system’s scalability.

In this paper, we argue that, besides balancing
consistency and scalability, it is equally, if not more,
important to achieve adaptability of consistency
maintenance. I.e., the system adjusts its consistency
level on the fly to suit applications’ ongoing need. This
paper then presents the design, implementation, and
evaluation of IDEA (an Infrastructure for DEtection-
based Adaptive consistency control), which adaptively
controls consistency in replicated services by utilizing
an inconsistency detection framework that detects
inconsistency among nodes in a timely manner.
Besides, IDEA achieves high performance of
inconsistency resolution in terms of resolution delay.

Through two emulated distribution application on
Planet-Lab, IDEA is evaluated from two aspects: its
adaptive interface and its performance of
inconsistency resolution. According the
experimentation, IDEA achieves adaptability by
adjusting the consistency level according to users’
preference on-demand. As for performance, IDEA
achieves low inconsistency resolution delay and
communication cost.

1. Introduction

Replicating data and services is an attractive
strategy to increase availability and performance in

distributed systems; in an Internet-scale system, such
as large-scale Grid, replication-based schemes may
indeed be the only way to provide continuous service
and prevent data loss in the presence of unreliable
Internet connections [4, 26]. For this reason,
replication-based systems become more and more
popular. Consequently, the interest in consistency
maintenance has also been revived because poor
consistency in replication-based systems results in
poor QoS or even monetary loss (in e-business
applications). Consistency in this context measures the
difference among snapshots of the application’s status
(such as the airline ticket booking record) in different
replicas. Simply put, the smaller the difference, the
higher the consistency level is.

Realizing that a large collection of applications,
such as e-business, are willing to sacrifice a certain
degree of consistency in order to scale their services
[26], recent research has concentrated on striking a
balance between consistency guarantee and system’s
scalability by enforcing a certain level of, rather than
perfect consistency. TACT, for example, explores the
continuum between strong and optimistic consistency
and proposes a framework to limit inconsistency levels
among different replicas according to the applications’
tolerance to inconsistency [26]. Chang et. al. proposed
an information updating framework in which different
users choose different consistency levels and the
system updates the data based on that information [3].

In this paper, we argue that it is equally, if not
more, important to achieve adaptability of the
consistency maintenance. Adaptability has two
meanings here. First, the system should be able to
adjust its consistency level on the fly, as opposed to a
predefined consistency level. This is important because
multiple applications with different consistency
requirements can run simultaneously in a modern
distributed computer system [11] and even one
application’s consistency requirement can change from
time to time as elaborated below.

 1

• A system may run multiple applications with
different requirements of consistency. In this
scenario, a predefined consistency level does
not fit all applications. While it is possible to
deploy multiple consistency protocols, it will
definitely complicate the system design and
drag down system’s performance due to the cost
associated with operating each consistency
protocol.

• For an application, the requirement of
consistency may change from time to time.
Take a virtual white board, in which participants
draw on a virtual white board to communicate
and collaborate, as an example. In this scenario,
a participant may have less consistency
requirement in the first several minutes when
the discussion is about the background, but can
have stronger consistency requirement when an
important topic arises. In this scenario, a
predefined consistency level does not reflect
participants’ changing requirements of
consistency over time.

Second, the end users should have the control on

how to adjust the consistency level (or requirement) on
the fly. That is, the users first give a hint about what
kind of consistency level (or requirement) they prefer
and then adjust that preference when the need arises.
The rationale behind this is that, although the users
themselves may know what they want, they may not be
good at expressing it in concrete and/or quantitative
terms. Instead, they know whether a given consistency
level is enough or not only when they see it.

While previous work by other researchers has
attempted to address these two issues, none of them
has solved them completely. For example, TACT [26]
proposes a framework to let servers adjust the total
consistency level for applications. Also, Chang et. al.’s
work [3], which is specially developed for online
conference applications, the users specify their desired
consistency level before the system runs.
Unfortunately, these frameworks do not have
interactions with end users for them to specify the
desired consistency level once the system starts
running.

Beyond the adaptive interface, it is equally
important that the consistency maintenance achieve
high performance. That is, to find inconsistencies and
when necessary to resolve them in a timely manner.
This is crucial because slower detection and resolution
can lead to poor QoS.

To this end, we present IDEA (an Infrastructure for
DEtection-based Adaptive consistency control) that
achieves both the adaptability and high-performance
goals. To achieve adaptability, IDEA adjusts the

consistency level on the fly through interaction with
users. Upon the detection of inconsistencies, IDEA
resolves them if the current consistency level doesn’t
satisfy applications’ requirement; otherwise, IDEA
will not resolve the inconsistencies except when the
system is lightly loaded. The advantages of this
approach are two folds: it can adjust the consistency
level on the fly by resolving inconsistencies on
demand; and more importantly, it gives the users the
ability to control their perceived consistency level. It is
worth mentioning that, because higher consistency
level means lower response time, we do not expect
users to abuse the system by overstating their
consistency requirement because that will ultimately
hurt them (lower response time).

To achieve high performance, IDEA utilizes an
efficient Inconsistency Detection mechanism proposed
in [14, 15] by the authors. Our previous work has
shown that the detection can be done in a timely
manner, not least because it divides the system nodes
into two layers (top/bottom layers) and is able to
capture the majority of inconsistencies in a relatively
small top layer that includes the most active writers. As
shown in the evaluation section, this ability to capture
most inconsistencies in a small top layer is also crucial
to guarantee the efficiency of the resolution.

To validate the design, we have implemented an
IDEA prototype on Planet-Lab [20] and emulated two
distributed applications, a distributed white board
system and an airline ticket booking system, on top of
IDEA. Collectively, they have shown that IDEA has
achieved the design goal of adaptability and efficient
inconsistency resolution (with small resolution delay
and minimal communication cost).

This paper hence has made two contributions. First,
we point out the importance of adaptability in
consistency maintenance and present a new protocol
IDEA to provide this adaptability. Second, we validate
and evaluate IDEA by deploying a prototype on
Planet-Lab. Results demonstrate that IDEA achieves
high performance in inconsistency resolution.

The rest of the paper is organized as follows.
Section 2 presents an overview of IDEA and Section 3
introduces the targeted applications. Section 4 and
Section 5 present the design of IDEA and how IDEA
can be applied to its targeted application. In Section 6,
IDEA is evaluated through the emulation of two real
applications on Planet-Lab, respectively. Related work
is described in section 7. Finally, Section 8 concludes
this paper and discusses future work.

2. The Overview of IDEA

IDEA is motivated by the observation that

conventional consistency control approaches are in-

 2

flexible because they deploy pre-defined consistency
protocols before systems start to run, which may not be
appropriate for an Internet-scale distributed system
where increased complexity calls for a more flexible
approach. We propose a new framework called IDEA
that, instead of enforcing a predefined consistency
level, detects inconsistencies when they arise and
subsequently resolves them based on applications’
consistency requirements that may be hinted by users
or derived dynamically from applications’ semantics.

IDEA is assumed to work with a general distributed
file system that handles the ordinary read/write
operations. The general distributed file system is
assumed to ensure the correctness of read/write
functionalities, while IDEA detects inconsistencies
among nodes and resolves them based on applications’
changing requirements. That is, IDEA provides
consistency control to this general file system.

Figure 1 illustrates the vision of IDEA. IDEA is
deployed in the middleware level and applications on
different nodes consult IDEA when they access files.
Upon a request, IDEA retrieves a copy of the file from
the underlying replication-based system and returns it
to the application. At the same time, IDEA derives a
consistency level for the returned replica. Then IDEA
checks whether the inconsistency level is acceptable
based on either users’ predefined tolerance levels or
the interaction with users in real time. If the
inconsistency level is acceptable, IDEA does nothing;
otherwise, IDEA will resolve this inconsistency upon
the request from the user. As discussed in Section 3.1,
users can communicate with IDEA about why the
current consistency level is not sufficient and IDEA
will learn from this to prevent annoying users again.

More specifically, upon initiating an application,
users have the option to predefine or hint on their
acceptable consistency levels. Or they could just
respond to IDEA interactively. If there is an initial hint
level, we denote it as L1. Upon receiving the response,
IDEA will not invoke the inconsistency resolution
module unless the consistency level is below L1. When
a user is not satisfied with the result, IDEA will
increase the consistency level by ∆. L1 + ∆ will then
become the new desired consistency level for the user
and IDEA will keep the application’s consistency
above this new level to avoid annoying the user again
in the future. This way, IDEA makes the consistency
control adaptive and gives users great flexibility to
adjust consistency level themselves.

Comparing with conventional consistency control
protocols, the benefit of detection-based IDEA lies in
the following tradeoff: it achieves faster detection and
resolution (thus stronger consistency guarantee) than
that of optimistic consistency control [8, 23, 24], the de
facto consistency protocol in large distributed systems,

Figure 1: The overview of IDEA

Figure 2: The trade-off of inconsistency

detection-based IDEA

with a slightly higher cost; its overhead is much
smaller than other protocols, such as strong
consistency [1], with slower detection speed (thus
relaxed consistency guarantee). Conceptually, the
tradeoff is depicted in Figure 2. In fact, using relaxed
consistency to trade for lower overhead is a common
practice, such as that used in web caching [7].

3. Targeted Applications

IDEA is designed to support a wide range of

distributed, replication-based applications that are
willing to trade certain consistency requirement for the
ability to scale to an Internet-scale distributed system,
particularly distributed online collaboration
applications.

Previous research has indicated that there are two
types of distributed online collaborations: synchronous
collaboration in which the participants appear online at
the same time and asynchronous collaboration in
which the participants do not necessarily appear online
at the same time [2].

 3

In this section, we list two representative
applications—one is synchronous collaboration and
the other is asynchronous collaboration—and discuss
their working flow. How consistency levels can be
measured and how adaptability is achieved through
IDEA for both applications will be discussed in
Section 5 after presenting the design of IDEA is
presented in Section 4.

3.1. Distributed white board system

A distributed white board system allows
participants to draw or write on the same virtual white
board so that these participants can interact and
collaborate with one another while working on a single
project or task. Because all participants usually appear
online at the same time, this is a synchronous
application. We assume that, in a distributed white
board system, each user/participant has a white board
system locally. Thus, due to network delays, the
message a user reads may not be the most up-to-date
information on other users’ view (or vice versa), which
results in inconsistency.

3.2. Airline ticket booking system

An airline ticket booking system is an example of e-
business applications. Because not all participants are
necessarily to appear online at the same time, this is an
asynchronous application. In this system, we assume
the existence of several booking servers, which are
distributed in a wide area environment. To improve the
efficiency of booking and avoid underselling, each
server tracks its booking record independently.
However, this may cause inconsistency—one server
does not necessarily know the booking record of other
servers in a timely manner—and hence overselling.
Certainly, both underselling and overselling will hurt
the company economically. From the company’s point
of view, there is a clear trade-off between the
efficiency of booking—to avoid underselling—and the
chance of overselling. Essentially, overselling is fine
as long as the amount is within a certain range, which
can be treated as a cost of avoiding underselling.

4. The Design of IDEA

There are two important features of IDEA: first, its
ability to adaptively resolve the detected inconsistency
based on applications’ changing requirements and
users’ preference; and second, the high performance of
both inconsistency detection and resolution in terms of
delay.

In this section, we first present a two-layer
(top/bottom layer) infrastructure adopted by IDEA
which is essential to both fast inconsistency detection
and resolution by capturing the majority of
inconsistencies in the top layer. The workflow of the
IDEA protocol is then presented. After that, we discuss
an efficient inconsistency detection mechanism that
provides IDEA a powerful API, detect (update),
which, given an update, will return “success” when
there is no inconsistency or “fail” when there is
conflict (thus inconsistency) detected.

However, this detection API does not quantitatively
measure how inconsistent a conflict is and thus cannot
tell the system whether a detected inconsistency is
acceptable or not. To solve this problem, IDEA
extends the original detection messages and uses a
single formula to quantify consistency level based on
the information provided by the return value of the
detection API. This formula is applicable to a variety
of applications and will be presented.

In terms of inconsistency resolution, we discuss two
mechanisms—background and active resolution—that
serve different purposes: background resolution
improves consistency in the system from time to time
and the latter is triggered when a user explicitly
requests a resolution operation.

Different applications naturally have different
meanings of adaptability and that issue is discussed
after. Finally, we discuss the interface provided by
IDEA for application developers to configure IDEA.

4.1. The two-layer infrastructure

IDEA utilizes a two-layer (top/bottom layer)
infrastructure to detect and resolve inconsistency for
each shared file or object. In the case of a white board
application, for example, the shared object is the
virtual white board itself. This two layer infrastructure
is first presented in [14, 15] and the top layer for a
given file, also referred to as a “temperature overlay”,
is constructed by leveraging the RanSub protocol [9] to
include nodes that update this file sufficiently
frequently and/or recently (hence the term updating
“temperature”). The remaining nodes form the bottom
layer.

Comparing with a flat architecture in which all the
nodes are in the same layer, there are two advantages
of utilizing this two-layer architecture. First, it is
unlikely that all the nodes in a large network will be
interested in the same file at the same time, thus it is
possible to capture all the active writers with a much
smaller subset of the whole network to form a top
layer. Second, due to the top-layer’s relatively small
size, it is much faster to detect and resolve
inconsistency among its members than the whole

 4

network. In the background, however, IDEA always
visits the bottom layer, which covers all the nodes in
the network, to catch the possible, although somewhat
unlikely, missed detections or resolutions by the top
layer.

We also need to mention that, because consistency
is associated with a single file, the concept of
top/bottom layer is also associated with a given shared
file—different files may have different top layers—and
different top layers do not interfere with one another.
For example, if a user joins multiple virtual white
boards, each white board is treated separately and
independently.

4.2. Overview of the IDEA protocol

 An overview of the IDEA protocol is depicted in
Figure 3. From the figure, we can see that the IDEA
protocol is triggered by two operations: write and
certain read operations. The write operation, such as
issuing an update in a white board, triggers the IDEA
protocol because it is essentially an update operation
that will surely cause inconsistency among replicas.
For read operations, IDEA is triggered when a reader
tries to retrieve a new file (such as a new snapshot of a
white board) because, in this case, the user needs to
make sure that the file retrieved is sufficiently
consistent for the user’s purpose. For other reads,
IDEA is triggered according to the context: if the file is
locally updated frequently, the read will not trigger
IDEA; if the file hasn’t been locally updated for a long
time and the user is afraid that the file may be
inconsistent, IDEA can be triggered.

After IDEA is triggered, it will use a detection-
based mechanism to check the inconsistency level,
represented by a single percentage number, such as
90%. Here, we assume that this number can be
obtained appropriately either from interpreting users’
view of QoS or by (analysis of) the nature of an
application; the mechanism to properly quantify this
parameter will be discussed in the Section 4.4. After
the inconsistency level is returned, IDEA checks
whether the inconsistency level is acceptable based on
either users’ predefined tolerance levels or the
interaction with users real time. If the inconsistency
level is acceptable, IDEA does nothing; otherwise,
IDEA will resolve this inconsistency upon the request
from the user. As discussed in Section 3.1, users can
communicate with IDEA about why the current
consistency level is not sufficient and IDEA will learn
from this to prevent annoying users again.

For efficient inconsistency detection, the
inconsistency level is initially detected only among the
top-layer nodes to improve the response time. Hence,
this value may not be accurate because the nodes in the

bottom layer can cause inconsistencies too, albeit
rather infrequently. To cope with this issue, we deploy
a rollback mechanism. More specifically, IDEA lets
users continue their work when they indicate that the
initially returned consistency level (from top layer
nodes) is acceptable. In the background, however,
IDEA continues to detect inconsistency in the bottom
layer and returns a new value. If the new value is
sufficiently close to the previous one obtained from the
top layer, IDEA keeps silent; otherwise, IDEA alerts
the user about the discrepancy and resolves the
inconsistency if the users so demand.

4.3. Efficient inconsistency detection

In [14, 15], we presented the design and evaluation
of an efficient, low cost inconsistency detection
mechanism, which is responsible for the inconsistency
detection module in IDEA. The basic idea of this
mechanism is to rely on the top layer of the two-layer
infrastructure for timely detection. In the bottom layer,
it uses gossip-based protocol [6] to check in the
background any missed inconsistency by the top-layer.
Essentially, the detection module provides a powerful
API (Application Programming Interface) to IDEA:
detect (update). Given an update, this operation will
return “success” when there is no inconsistency or
“fail” when there is conflict (thus inconsistency)
detected. Theoretically speaking, this detection
mechanism, as a rather independent component in
IDEA, can be used by other consistency control
mechanism (other than IDEA) as well.

The conflict of two or more updates, and hence the
inconsistencies of different replicas, is detected
through exchanging version vectors [19] among
replicas. A version vector tracks the number of times a
file is updated by a certain user and uses that to detect
conflict. For example, version vector (A:3 B:5) means
that user A has modified the file three times and user B
has modified it five times. So the replica represented
by this version vector is earlier in time (or more
obsolete) than that presented by version vector (A:4
B:7). With version vector, two replicas are inconsistent
if their version vectors are different. As measured
before, with this two-layer inconsistency detection
framework, most inconsistencies can be caught in the
top layer with a very high probability (more than 95%
in a variety of scenarios) [16] without much
maintenance cost and, most importantly, in a timely
manner [14, 15].
 However, this detection API does not quantitatively
measure how inconsistent a conflict is and thus cannot
tell the system whether a detected inconsistency is
acceptable or not. To solve this problem, IDEA uses a

 5

Figure 3: Overview of the IDEA protocol

single formula to quantify consistency level based on
the information provided by the return value of the
detection API. This formula is applicable to a variety
of applications and will be presented in the following
subsection.

4.4. Quantifications of consistency level

 Basically, the inconsistencies among nodes is
quantitatively measured by a metric adopted from the
TACT measurement [26] where a <numerical error,
order error, staleness> triple is used to indicate the
inconsistency level, as developed by TACT. Now we
use an example to illustrate how this is achieved and
how it can be applied to a variety of applications.

4.4.1. A scenario

 First of all, we assume two replicas (a and b) and
two active users/writers (A and B), as depicted in
Figure 4(a). User A resides in replica a and user B in
replica b.

 Now we let each of them have some updating
activities and, by the end of these activities, their
version vectors are shown in Figure 4(b). Because the
version vector here is actually an extended version of
original version vector that only tells us the number of
updates from each writers (in the form of <A:2 B:0>,
for example), we now take a closer look of replica a’s
version vector to show the difference.
 First, the extended version vector has time stamps
associated with each update, such as <A:2(1, 2)> that
means the two updates from A happens in time point
of 1 and 2, respectively. To make the timestamp
comparable among different sites, we assume that the
gap among time clocks of participating nodes in the
system is within seconds, which is small enough to
neglect in a globally distributed system. Practically,
there are two mechanisms to achieve this precision.
First, the system can run a globally synchronizing
clock algorithm, such as that proposed in [12]. If it is
too troublesome to run such a clock synchronizing
algorithm, another choice is to let each node to keep
their time accurate by synchronizing with a time sever
using NTP (Network Time Protocol) [17], which can

 6

be easily achieved in both Windows or Linux
operating systems by enabling the corresponding
modules [17].
 Second, as we can see, there is a numerical value in
square brackets (the <[5]> column in the extended
version vector). We use this value to represent some
critical meta-data of applications to characterize the
difference of different versions, as explained below. In
the case of distributed white board, for example, the
meta-data can be the sum of the ASCII value of the last
several updates; in an airline ticket booking, it can be
the total sale price. These meta-data can give a quick
sense of what the effect of the conflict would be,
which is easier to understand in the airline booking
example—the data tells the total sale that has
significant business value.
 Third and finally, the <numerical error, order
error, staleness> triple is attached at the end to
conclude the extended version vector. The numerical
error is deduced by comparing the value of critical
data; the order error counts for the difference between
number of updates (an example of calculation will be
given shortly after); and staleness error is calculated
from the time stamps (an example will be given later
too). In Figure 4(b), because replica a is not aware of
any conflict in the system, all the errors are set to zero.
 Figure 5 visually depicts the difference between the
original version vector and the extended one used in
IDEA. Because IDEA uses this extended version
vector instead of the original one, we will simply use
the term “version vector” to denote the extended
version vector for brevity in the rest of this paper.
 Suppose now that the detection process is started,
let’s assume that the version vector of replica is
traversed from replica b to replica a, as shown in
Figure 4(c).
 Then, after comparing with that of replica a, the
modified version vector of replica a and b will be
changed and the new ones are shown in Figure 4(d).
The calculation is carried out as follows.
 First, IDEA derives a reference consistent state
which is the state chosen by IDEA that is regarded as
the basis for consistency level calculation. As we will
show later, there are several ways to derive the
reference consistent state. For now, let’s assume that
the replica with higher ID value becomes the reference
consistent state, which means that, if version vector
from a and that from b conflict with each other, IDEA
will choose b (b > a) as the reference consistent state
and then use it to calculate a and b’s consistency
levels.
 But first, we need to use b (the reference consistent
state) to calculate <numerical error, order error,
staleness> triple that will be used to derives a

numerical consistency level as follows: the replica a’s
final value of its meta data has a gap of 3 with that of b
(the reference one), so the numerical error is 3; replica
a misses one update and has two extra ones, so the
order error is 3 too; finally, the last time point when a
is consistent is time 1, and that has a gap of 2 with the
most recent update at b (time 3), so the staleness is 2.
Generally, staleness of one replica is defined as the
time difference between the most recent update in the
reference consistent state and the last time point when
it is consistent.
 Then, IDEA calculates the consistency level as
follows. First, IDEA predefines a maximum value for
each member of the triple. For example, if in practice,
the order error is very unlikely to be larger than 10,
then the maximum value for order error can be set as
10. Then IDEA gets input from users and sets weight
for the three members respectively. For example, if
users treat the three members equally, their weight will
be equal and 33.3%. Then the consistency level can be
quantified as in Formula 1:

weightstale
stalenessMax

stalenessstalenessMax

weightorder
orderMax

errororderorderMax

weightnum
numMax

errornumnumMaxyConsisntec

_
_

_

_
_

__

_
_

__

×
−

+

×
−

+

×
−

=

… (1)

 The calculation of consistency level of version
vector of replica a and b according to Formula 1are
presented in Figure 4 (e) by assuming that the
maximum error for all three metrics are 10.
 One may wonder that, if the consistency state is
easy to be figured out, why don’t we resolve it
immediately? And that is because of two things:
communication overhead for the system and its
potential to block updating operations for users. First,
if we resolve every conflict, the huge communication
cost (copying remote updates to local sites) will be
huge. For this reason, we prefer to defer this resolution
whenever possible. Second, once we decide to resolve
the inconsistency, all future updates will be blocked
until the resolution is finished (to prevent invalid
updates that based on an inconsistent copy). Thus, to
improve system’s responsiveness, we prefer not to run
the resolution unless the inconsistency is unacceptable
(or based on periodical running).

 7

(a) Two replicas and two users

(b) Some updates by A and B

(d) Version vector of b travels to a

(d) Comparing two version vectors

(e) Calculate consistency level for replica a and b

Figure 4: An example of consistency level
quantification

Figure 5: Comparison between original
version vector and the extended version

vector in IDEA

4.4.2. Accuracy of the calculation

We have to admit that this calculation of
consistency level may not be 100% accurate because it
does not include the replicas in the bottom layer.
Nonetheless, as explained in the IDEA protocol,
inconsistency detection will be carried out in the
bottom layer after that in the top layer is done. After a
certain period of time, the result of the bottom layer
will be returned. Then, if the new result is sufficiently
close to the one returned from the top layer (e.g., 78%

 8

vs. 80%), the top-layer result remains intact; if the
results from the two layers are not close enough, the
top-layer result needs to be modified and the
operations during this period should be rolled back if
the new consistency level is not acceptable according
to the user’s preference that IDEA has learn so far.

There are two things that we need to point out about
this potential rollback operation. First, to void
annoying users, IDEA will handle the rollback in the
background and return the result to the users
afterwards. Second, the impact of rollback should not
be overstated. According to our previous analysis [16],
it is very rare (less than 5% in a variety of scenarios)
that the top layer will leave an inconsistency
undetected. Thus, we treat the rollback mechanism as a
back-up and do not expect it to slow down the
performance of IDEA.
 Due to the potentially large number of nodes in the
bottom layer, which covers all nodes in the system, a
critical question is how long the detection in the
bottom layer would take. Intuitively, the longer the
delay, the larger number of states will potentially need
to be rolled back, which causes more overhead and
frustrates users more. Currently, we use TTL (Time to
Live) to control the traversal of the bottom-layer
detection messages, thus bound the delay. Clearly, this
is a trade-off between accuracy and responsiveness.
We believe that, in an Internet-scale system like Gird,
this trade-off is reasonable and necessary. Other
mechanisms to tackle this problem certainly exist and
we plan to investigate this issue further in the future.

4.5. Inconsistency resolution

Up to this point, we have discussed how
consistency level can be derived, and now move on to
discuss how an inconsistency can be resolved when
needed. We discuss the inconsistency resolution
process in two steps. First, we discuss the mechanisms
to resolve an inconsistency. Second, we discuss two
ways to initiate the resolution: background resolution
and active resolution.

We mentioned in the beginning of this section that
one feature of IDEA is that it can resolve an
inconsistency in a timely manner. This claim holds for
both background and active resolution, and it
originates from the relatively small size of top layer.
This claim will be evaluated in Section 6.

4.5.1. Resolution mechanisms

As mentioned earlier in Section 4.3, inconsistencies
are detected by comparing version vectors. Given two

version vectors u and v from two replicas, the replicas
are inconsistent if their version vectors are different.
Further, as defined in [19], two vectors are comparable
if and only if u < v, u = v or u > v. If not, they are not
comparable with each other. For example, (A:5, B:3) is
not comparable with (A:3, B:6).

Now, if the two version vectors are comparable, the
resolution is relatively easy: just let the smaller one
learn from the larger one.

However, if the two vectors are not comparable,
resolving the inconsistency between them is not that
easy. For example, if two sentences are written, how
can a system determine which one should come first?
In practice, a variety of options can be adopted. Here
we list three possible policies, as well as their target
applications. These policies are briefly described for
illustration purposes only and are not meant to fully
and solely rely on for inconsistency resolution. In
practice, other policies are also possible.

• Invalidate both. In this case, the two

conflicting versions are both invalidated and
they will roll back to a previous consistent
version. In a distributed white board, for
example, two simultaneous updates at the same
spot can be both cleared to prevent ambiguity
and ensure fairness (so that no one is more
important than the other).

• User ID based. To ensure fairness, each node
can be assigned a randomly chosen ID, such as
the hash value of their IP address via MD5,
which is commonly used in Peer-to-Peer
systems. When a conflict arises, the user with
the larger ID wins. This approach can be used in
both a distributed white board and an airline
ticket booking system where certain progress is
preferred (if both updates to be invalidated, no
progress can be made in a white-board-based
discussion and no ticket will be sold in an
airline ticket booking system). In this case, it is
desirable to treat its members equally (ensured
by using randomized user IDs).

• Priority based. In this policy, different levels of
priorities are assigned to users. For example, the
supervisor of a company will have a higher
priority than ordinary workers. When the
conflict arises, the version created by higher
priority user wins. In a distributed white board,
a supervisor can have a higher priority and other
employees; in an airline ticket booking system,
giving preferred customers, such as those who
have traveled the most with this airline, higher
priority is a sensible choice.

 9

4.5.2. Background and active resolution

Here we discuss two inconsistency resolution
mechanisms—background and active resolution—that
serve different purposes: background resolution
improves consistency in the system from time to time
and the latter is triggered when a user explicitly
requests a resolution operation.

The necessity of the two mechanisms is explained
as follows. Active resolution is needed because we
expect that end users will explicitly request an
inconsistency to be resolved when it becomes
unacceptable. However, if we only resolve
inconsistencies when they become unacceptable, it will
unavoidably annoy users from time to time: once a
while, the system’s consistency will become really
bad. Even IDEA can avoid annoying users by resolve
the inconsistency right before it becomes unacceptable,
it still does not prevent the consistency from dropping
continuously. So, IDEA also periodically resolves
inconsistency in the system to improve the consistency
level, which is called background resolution.

Now we illustrate the process of background
resolution, followed by that of active resolution.

First of all, the background resolution process is
started by IDEA periodically to improve the
consistency among replicas on a regular and
continuous basis without users’ intervention. Once it is
started, one replica (chosen by IDEA) in the top layer
for a certain file acts as the initiator and collects all the
version information of the members in the top layer by
sequentially visiting them and then determines a
consistency replica, by following the resolution polices
discussed in the Section 4.5.1. It then informs all the
members of information about the new consistent
replica and the members will update their copies by
acquiring any missing updates to reflect this change.

Active resolution, unlike the background
consistency resolution, is triggered when a user
explicitly requests an inconsistency to be resolved.
That is, active consistency resolution is a backup of the
background consistency resolution and only kicks in
when the periodical background consistency resolution
still cannot satisfy some users’ needs.

When active consistency resolution is triggered, the
nearest replica (including the user’s local copy) takes
the responsibility of initiating inconsistency resolution.
More specifically, we use a two-phase protocol. First,
the initiator sends a request to all the members in the
top layer in parallel to call for attention to the
upcoming resolution process. Second, only after it gets
all positive acknowledgement (i.e., no one else is
initiating the same process), it starts the resolution

procedures; if someone else has already sent the same
request out, they will back-off and retry after a random
amount of time. Here, the back-off process is used to
suppress redundant resolution process to save
bandwidth: in the retry period, if one receives
another’s notice before it tries, it will simply cancel its
own resolution process.

When this first phase succeeds, the resolution
process is the same with that of the background
resolution process.

4.6. Adaptive consistency control

Different applications naturally have different
meanings of adaptability and here we discuss how
adaptive consistency control works from an
application’s point of view. That is, how IDEA caters
to application semantics in practice. Here we list three
possible application types that can benefit from IDEA
and explain how IDEA works for them based on their
semantics, respectively. Our hope is that, through these
three examples, we can give practitioners some hints
on and insight into applying IDEA in a real
environment.

• On-demand. In this scheme, users explicitly

request consistency resolution when they are not
satisfied with the current consistency level.
Otherwise, they depend on the background
consistency resolution. One possible application
is the distributed white board system in which
each newly posted message will contain its
consistency level generated by IDEA. Then,
when the users feel that the consistency level is
unacceptable, they tell IDEA to adjust the
weights of the three metrics, or to keep the same
weights but boosting the overall consistency, or
to do both.

• Hint-based. This scheme asks users to give
hints about their approximate consistency
requirements. When a consistency level is
derived, IDEA only triggers the active
consistency control when the consistency level
drops below that hinted by the user. In this
mode, users in a distributed white board system
indicate their tolerance levels and IDEA will
keep the consistency level above that. However,
if users later feel that the pre-set hint level is not
high enough, they can communicate with IDEA
and IDEA will change the hint level to a higher
one.

• Fully automatic. This scheme improves
consistency with best effort, by adjusting the

 10

frequency of background resolution, under
certain constrains. Possible applications include
e-business applications such as an airline ticket
booking system. For example, if the consistency
overhead is deemed not to be over 20% of
available system capacity (to save enough
network bandwidth for customers’ requests),
then, based on the system’s current total
available capacity, the frequency of background
resolution needs to be adjusted accordingly. At
the same time, as explained in Section 3.2
earlier, such a system should also not cause
either underselling or overselling, which has
undesirable economical consequences. Thus,
IDEA first needs to learn these two bounds of
the frequency of background resolution that
causes underselling and overselling. When
IDEA adjusts the frequency of background
resolution based on the current system load (for
example, to consume less than 20% of the total
available bandwidth), the adjustment will obey
the two bounds: it will not be above the higher
bound in order to prevent underselling and not
be under the lower bound to prevent overselling.

4.7. IDEA APIs

IDEA has two interfaces, one is to the developers
and the other is to the end users, and they serve
different purposes. On the one hand, the develop
interface is to let them use IDEA to serve their
particular applications, be it distributed white board or
others. On the other hand, the end user interface lets
users to interact with IDEA during the runtime of
IDEA. For services other than consistency, end users
are supposed to interact with applications directly. The
difference between the two interfaces is illustrated in
Figure 6 as follows.

Because we have discussed IDEA’s interface to end
user extensively in previous sections, we devote this
sub-section to discuss IDEA’s interface to application
developers. This interface, in the form of APIs
(Application Programming Interface), is for
application developers to interact with IDEA.
Currently supported APIs are listed in Table 1 and we
explain how they are used as follows.

• Cast applications to IDEA’s consistency

metric. While we use the triple
consistency<numerical error, order error,
staleness> as a generic form to derive a
consistency level, the system administrators

Figure 6: Two interfaces of IDEA

Functions
set_consistency_metric (a, b, c): cast applications to
IDEA infrastructure
set_weight (a, b, c): set weights for the three metrics
for calculating consistency level.
set_resolution (r): set the resolution strategy
set_hint (h): set the initial hint level
demand_active_resolution (): call for active
inconsistency resolution
set_background_freq (f): set the frequency for
background inconsistency resolution

Table 1: APIs for configuring IDEA

need to explicitly define the meaning of the
three metrics in the application’s context. For
example, he or she needs to define the
granularity of application’s objects, to define
what kind of error is considered, etc. This is to
cast applications to IDEA infrastructure. This is
done through the set_consistency_metric
function.

• Setting weights of metrics. This is done
through the set_weight function. To derive a
single value, the system administrators need to
define the weight of each metric in the
quantification using a triple weight<numerical
error, order error, staleness>. For example, to
treat each metric equally, they can indicate
weight<0.33, 0.33, 0.33>. If one metric, such as
order error, is not suitable for one particular
application, it can be marked by indicating its
weight as 0, such as weight<0.4, 0, 0.6> in this
case.

 11

• Setting resolution strategy. This is done
through the set_resolution function. The
parameter is a single integer number that
indicates the preferred inconsistency resolution
policy. Suppose there are four policies, as
explained in Section 4.5, then the possible value
will be 1, 2, 3, or 4.

• Setting hint for hint-based applications. This
is done through the set_hint function and is only
used in hint-based applications, one type of
applications discussed in Section 4.6. A valid
parameter should be between 0 and 1, such as
0.85. In particular, by setting this value to 0, the
administrator indicates that this is not a hint-
based system; setting this value to 1 means that
the user does not tolerate any inconsistency.

• Demand active inconsistency resolution.
Applications use function
demand_active_resolution to explicitly ask
IDEA to actively resolve the conflicts through a
resolution strategy defined through “Resolution
strategy” API.

• Setting frequency for background resolution.
Applications set the frequency for background
resolution performed by IDEA through the
function set_background_freq.

5. Apply IDEA to Applications

In this section, we discuss how consistency levels

can be measured and how adaptability is achieved
through IDEA for distributed white board system and
airline ticket booking system.

5.1. Distributed white board system

As stated in the design of IDEA, IDEA uses the
<numerical error, order error, staleness> triple to
indicate the consistency level. In the case of a
distributed white board system, numerical error
denotes the gap of some meta data between two
replicas (such as the sum of the ASCII value of the last
several updates); order error measures the degree of
the wrong sequence of updates that appear in one node
and, in white board, this is the most confusing for
users because these updates make sense only when
they are read in order; finally, staleness represents the
gap between now and the last time a replica is
consistent.

It is worth mentioning that staleness is different
from response time—a performance metric we will use
later to evaluate IDEA. The key difference is that
staleness denotes how long the replica has been in an

inconsistent state, while response time is the
transmission delay for a requested consistent image
(i.e. content of a shared file/object) to arrive. So, even
if staleness equals a long delay, the response time of
IDEA as a whole can still be minimized because they
evaluate different processes.

Given the triple value, the consistency level can be
then quantified, as in the formula 1 in Section 4.4. By
adjusting the weight given to each member of the
triple, IDEA can reflect applications’ different
characteristics. For example, users in a white board
scenario may prefer more order preservation (all
messages appear in the same order at different nodes)
than staleness, so IDEA will give more weight to order
error, such as 0.7 to order error and 0.1 to staleness.

After discussing how to evaluate consistency level,
now we briefly talk about how users can interact with
IDEA to achieve adaptability.

First of all, with IDEA, the inconsistency among
different sites can be detected and IDEA derives a
consistency level for a given replica in a timely
manner. Then IDEA checks whether the inconsistency
level is acceptable based on either users’ predefined
tolerance levels or the interaction with users in real
time. If the participant considers the current
consistency level tolerable (for example, the order
preservation is good enough), he or she needs not do
anything. Otherwise (for example, the order
preservation is bad and annoys him or her), he or she
can explicitly ask the inconsistency to be resolved.

There are three ways users can communicate with
IDEA about why the consistency is unacceptable:
change the weight, boost overall consistency level
without changing the weights, or do both. More
concretely, the users change the weight when they feel
frustrated about one particular metric, but not others.
For example, they may feel that order preservation is
fine but the staleness is too high. They can then ask an
increase of the weight for staleness. Alternatively, they
can simply ask IDEA to boost the overall consistency
level if they are satisfied with the assignment of
weights. Finally, the users can ask IDEA to do the two
at the same time: first changing the weight assignment
and then boosting the overall consistency level.

If users demand inconsistency resolution, IDEA
will do so and return a consistent result afterwards. As
explained in Section 2, during the same time, IDEA
will also learn the new acceptable consistency level
and try to avoid annoying users again by keeping the
consistency level above this new one in the future.

Overall, by periodically detecting inconsistency
with sufficient frequency behind the scene, but only
resolving them when users demand, IDEA keeps the
system running smoothly without interruption to the

 12

application. However, when the need arises, IDEA is
able to bring the consistency level back to acceptable
states in a timely manner as well as dynamically adapts
the consistency measurements parameters to prevent
annoying users again.

5.2. Airline ticket booking system

As in a white board scenario, the consistency level
of an airline ticket booking system can be measured by
the weighted sum of the triple values. In airline ticket
online booking, however, order preservation may not
be the sole focus because staleness and numerical can
potentially affect profits too. In this scenario, order
error means the wrong sequence of the booking order
from users and that can cause conflicts when the order
matters, such as assigning seats when clients purchase
tickets; staleness denotes the delay of a booking record
that appears on other nodes and it cause conflict too
because a replica may decide the sale without the full
knowledge; and numerical error can represents the gap
of the system’s overall sale price on different web
server. Hence, the weights given to the three members
of the triple should reflect this. For example, we can
give the weight of 0.33 to each of them. As in the
white board application, the weights can be
dynamically adapted during runtime.

In terms of adaptability, IDEA may not directly
interact with the application’s clients because it is the
booking servers that ultimately commit updates.
However, it is difficult to decide the preference of each
booking server because it is the overall system’s
performance that matters.

For this reason, IDEA runs a background
inconsistency resolution protocol among the booking
servers periodically to improve the consistency from
time to time. Clearly, there is a tradeoff between the
frequency of background inconsistency resolution and
the overhead of consistency control: the more
frequently the resolution protocol runs, the better
consistency the system can achieve; at the same time, it
will incur high overhead and increase the likelihood of
underselling—the system is kind of locked when the
inconsistency is being resolved.

In an e-business environment, neither underselling
nor overselling is desirable. Thus the consistency level
is not always the higher the better. Hence, the
frequency of background resolution cannot be too high
even if the system can sustain it. In practice, an ideal
frequency can possibly be deduced or learned (e.g.,
through machine learning techniques) from a long
period of running in the following manner. First, IDEA
sets an initial frequency and adjusts it on the fly based
on system’s load. Second, when the frequency is too

low (and the consistency level is low too) and causes
overselling, IDEA will increase the frequency beyond
the current level and keep the frequency above this one
to avoid overselling; similarly, when the frequency is
too high (and the consistency level is high too) and
causes underselling, IDEA will decrease the frequency
below the current level and keep the frequency under
this one to avoid underselling. Overtime, IDEA will
learn the two boundaries within which it can adjust the
frequency.

6. Evaluation

To evaluate the adaptability and performance of
IDEA, we implemented IDEA and two emulated real
applications (a virtual white board and an online airline
ticket booking application) that run on top of IDEA,
and deployed them on the Planet-Lab [20].

The applications are emulated by following their
operational sequences. In the case of a distributed
white board application, we abstract the distributed
white board as a set of objects that are replicated on
each participating node. Then, we treat each update on
the white board as a write operation on its local
replica. Similarly, for an airline ticket booking
application, each booking server has a replica of it and
each update is considered as a write operation in its
local replica. Due to the lack of available traces, we
use a synthetic workload that assumes uniform
distribution of the updating frequency for both
applications. After updates are issued, IDEA works to
maintain the overall consistency level of the virtual
white board according to the protocol. Because our
purpose of the experiments is to evaluate the
performance and effectiveness of IDEA, we assume
that these updates are all conflicting with one another
(otherwise, IDEA needs not to care about them). While
the two applications look similar in this abstract level,
they differ in how the consistency is maintained: a
participant in a distributed white board either gives a
hint about their consistency requirement or interacts
with IDEA on-demand; booking servers in an airline
ticket booking application, however, can only depends
on automatic consistency resolution whose frequency
can be adjusted because, unlike participants in a white
board, each booking server does not care about its
view of consistency—instead, it is the overall
consistency that affecting the business goal that
matters.

We use three metrics—namely, delay, consistency
level, and incurred overhead—to measure the
performance of IDEA. Delay information is important
because it determines the performance of IDEA.

 13

Consistency level is also a metric because it controls
the QoS perceived by participants. Finally, we
evaluated the incurred communication overhead,
measured in number of protocol messages, by IDEA to
demonstrate its scalability (the lower the overhead, the
more scalable IDEA is).

As mentioned earlier, we focus on two aspects of
IDEA: its adaptive interface and its performance. To
evaluate the adaptive interface, we use an emulated
distributed white board application and let users
interact with it in an on-demand fashion. To evaluate
the performance, we first investigate the response time
of consistency resolution in a distributed white board
scenario and then evaluate the communication
overhead in an emulated airline ticket booking system.
As for correctly re-order conflicting updates, we
simply choose the one with higher ID as the perfect
image, one of three policies discussed in Section 4.6.

Also, in Section 4.4.2, we discussed the rollback
mechanism that is triggered when the detection in the
bottom layer returns an actual consistency value much
worse than the one returned from the top layer. In this
evaluation part, however, we do not consider the
rollback mechanism for two reasons. First, according
to our previous analysis [16], the possibility that the
top layer fails to detect an inconsistency is indeed very
small (less than 5% in a variety of scenarios and as
small as 0.04% in certain cases). Second, this
evaluation serves the purpose to validate the design of
IDEA and the rollback mechanism is not essential for
this purpose because the rollback mechanism uses TTL
to control the detection delay in the bottom layer and
we do not expect the rollback mechanism to be a
performance bottleneck.

6.1. The adaptive interface of IDEA

Here we use a hint-based application to show the
effectiveness of the adaptive interface of IDEA. In this
application, each user indicates a certain tolerance
level to the inconsistency level, which is the hint. The
assumption is that, when the system’s consistency
level is above the hint level, the user is satisfied. Thus,
IDEA only resolves inconsistency when the
consistency level drops below the hint.

However, this scheme will cause the user to suffer
from at least a short period of time during which the
user is in an inconsistent state, an undesirable event.
To cope with this, the user can set a hint level slightly
above its real acceptable consistency level. In this way,
IDEA starts to resolve any inconsistency early enough
to keep the system’s consistency level above the user’s
real hint level all the time. As shown in the following
experimentation, IDEA can bring the system’s

consistency level back to a satisfactory level in a
timely manner.

The experimentation is run over 40 Planet-Lab
nodes, in which four of them are assumed to be
concurrent writers of a given file. After warming up,
the four writers form a top layer of four nodes that
includes all of them. Because these 40 nodes span US
and Canada, we believe it is representative of an
Internet-scale distributed system. While a top layer of
four nodes is not a large one, it is sufficient for our
investigation purpose because they are carefully
chosen so that they are far apart from each other. Also,
based on data collected from this setup, we will later
extrapolate the result to predict the performance of
IDEA in a more dynamic system (with more
simultaneous writers).

After that, the four nodes start to update the same
file every 5 seconds during a 100- second period,
which amounts to a total of 20 updates. This
experiment is run with two different hint levels. First,
we set a user’s hint level to 95%, which allows IDEA
to kick in when the user’s consistency level is lower
than 95%. Second, we set the user’s hint level to 85%,
where IDEA kicks in when consistency level is below
85%. The results are summarized in Figure 7(a) and
Figure 7(b), respectively, in which the “view from the
user” is the consistency level of the writer with the
worst consistency and the “system average” is the
average value of the consistency level of the four
writers.

As shown in the two figures, the consistency level
is improved right after IDEA kicks in, by evoking the
active resolution scheme. In both scenarios, IDEA was
able to bring the consistency level back to satisfactory
states fairly quickly. Please note that IDEA actually
brings the system’s consistency level back to
acceptable states in less than one second, as discussed
in the previous section. The reason for why these two
figures show that the consistency level is brought back
to acceptable states after five seconds is because we
sample the system’s consistency level every five
seconds in this experiment.
 The lowest consistency levels for users in the two
experiments are 94% and 84% respectively. Thus, if a
user’s real hint level is 94% or 84%, he/she can set the
hint level to 95% or 85%, respectively, to avoid
suffering from being in inconsistency states all
together.

Then we combine the two settings by running the
experimentation for 200 seconds. Same as above, the
four writers update the same file every 5 seconds,
which amounts to a total of 40 updates per writer. We
initially set the users’ hint levels to 95% and reset the
hint levels to 90% after 100 seconds. The result is

 14

summarized in Figure 8. The achieved lowest
consistency level for writers (even for the one with the
worst consistency) in the experiment is about 95% in
the first 100 seconds and 90% in the second 100
seconds.

Collectively, these experiments and results clearly
show the feasibility and effectiveness of the IDEA’s
adaptive interface.

6.2. IDEA’s response time

To evaluate the performance of IDEA’s active
consistency resolution scheme in terms of response
time, we consider a simple distributed white board
application in which four concurrent writers form the
top layer. Because we treat distributed white board as
an on-demand application, a node triggers active
resolution when it feels that the consistency level is not
satisfactory. We run the consistency resolution scheme
four times, and each time we pick a different writer to
initiate the request for active consistency resolution.
We use the average of the four runs as the final result.

Table 2 shows the response time breakdown for the
two phases involved in an active consistency
resolution. As elaborated before, phase one is a call-
for-attention and phase two resolves inconsistency
among the top-layer nodes by visiting them
sequentially.

The result shows that phase one is much shorter
than phase two. This is due to two reasons. First, the
operation in phase one is only a call-for-attention, thus
there is little computing overhead involved; on the
other side, phase two involves collecting replicas’
information (such as comparing version vectors) and
resolving the potential inconsistencies, which has
higher communication as well as computation
overhead. Second, the call-for-attention operations for
different nodes are executed in parallel, which further
improves its speed; for the second phase, though, it
traverses all the top layer members sequentially to
resolve the inconsistencies one by one. In this design,
we choose to run the second phase sequentially
because it simplifies the active writer’s job—just need
to communicate with one other active writer at a time.
However, if performance is a concern, it is not difficult
to exploit parallelism for the second phase (letting an
active writer contact all the other active writers at
once).

Now we use this result to estimate the scalability of
active resolution as follows. Because phase one is

 Figure 7(a): Setting hint level at 95%

 Figure 7(b): Setting hint level at 85%

Figure 8: Hint-based application

 Delay for 1 round of active resolution
Phase 1 0.46825 ms
Phase 2 314.241 ms

Table 2: A breakdown of two phases involved

in active resolution

 15

executed in parallel, its performance does not change
significantly with the top layer size. Since phase two is
executed sequentially, its response time increases
approximately linearly with the top layer size. The
result in Table 2 is from a top-layer of size four where
there are three nodes in top layer that the initiator
needs to contact, thus on average, the cost for each
additional member in the top layer is roughly 104.747
ms (314.141 / 3, because there are only three nodes
need to be traversed). Thus the response time of active
resolution for a top layer of size n is extrapolated as in
Formula 2:

)1(*747.10446825.0 −+= nDelay … (2)

We depict the cost for active consistency resolution

with top layer size up to ten in Figure 9. From the
figure we can clearly see that, even with ten
simultaneous writers, which is highly unlikely in a
short period of time (in order of seconds) in practice,
the cost of active resolution is still below one second.
In an Internet-scale system, we believe that this is a
reasonably good performance because it is not
uncommon that, in a large-scale distributed system, a
message is to be delayed for seconds or even more,
thus offsetting the impact of delay caused by IDEA.
Nonetheless, as explained earlier, a parallelism
mechanism can be easily deployed to further improve
the responsiveness of IDEA, which is useful in a
scenario where the number of active writers is rather
large.

We elaborated in Section 4.5.2 that background
resolution essentially consumes the time incurred by
the phase two of active resolution (first to collect all
the updating information; second to send the consistent
replica image information back), the delay of
background resolution can thus be presented
approximately as in Formula 3.

)1(*747.104 −= nDelay … (3)

Clearly, the cost is even smaller than the one of

active resolution. Together, the two measurements
indicate that neither the active nor the background
consistency resolution schemes in IDEA slows down
the system even with a relatively large number of
simultaneous writers.

6.3. IDEA’s communication overhead

 To measure the communication cost in an
appropriate context, we deploy IDEA in an automatic
airline ticket booking system that, as stated in Section

Figure 9: Scalability of active resolution

scheme

Frequency Overhead (# of exchanged messages)
20 seconds 168
40 seconds 96

Table 3: Overhead

4.6, mainly depends on the background resolution
scheme to maintain consistency among nodes. Running
periodically, the background resolution scheme brings
the system’s consistency level back to satisfactory
states periodically.
 Naturally, consistency resolution implies
communication overhead, which is what we are going
to measure here. In this application, however, the
frequency of running the background resolution
scheme is also a design tradeoff: the more frequently it
is run, the better the system’s average consistency
level, but the overhead could become formidable.
Thus, as stated in Section 4.7, there is a need to control
the total overhead of IDEA below a certain ratio of the
currently available bandwidth.
 Hence, after evaluating the absolute communication
cost, we will further explore the derivation of an
optimal rate of running background resolution based
on system’s total capacity here.

6.3.1. The communication overhead

 We run this experimentation with the same
environment as in the previous section with two
settings: first, we allow the background resolution
scheme to kick in every 20 seconds; second, we allow
the background resolution scheme to kick in every 40
seconds. The results are shown in Figure 10 in which
the consistency level is the one perceived by all the top

 16

layer nodes. The incurred overhead, in terms of
exchanged messages, is summarized in Table 3.
 If we assume that each packet has size of 1KB (this
is a reasonable assumption because the version vector
only needs several bits to store its information), the
total overhead of the first run (every 20 second) is
168KB and, after deriving it by the 100 second of
running time, equals to 1.68KB/s, or 13.5bps, which is
a very minimal bandwidth cost even for dial-up
connections.

6.3.2. The trade-off

This experiment also clearly shows the tradeoff
between overhead and achieved consistency level.
That is, with the increased frequency of background
checking and resolution—thus the increased overhead,
the average system’s consistency level becomes
higher, at the expense of higher overhead (Table 3).
Here we try to derive a formula to determine an
optimal rate of running background resolution as
follows.
 First we assume the existence of a monitoring
program on the server side to monitor the current total
available bandwidth and we believe that this is a
reasonable assumption. Then all that is needed in order
to control the overhead of IDEA under a certain
percentage of the current total available bandwidth is
the communication cost of one round of IDEA
background resolution. For example, if the current
total available bandwidth is b Mbps, the maximal
percentage of the bandwidth that can be used by IDEA
is x%, and the one round communication cost is c Mb,
the optimal rate of the background resolution can be
presented as:

c
xbrateOptimal %_ ×

= … (4)

To derive an optimal rate of background resolution
according to Formula 4, we need to know the
communication cost of one round c. From Table 3, we
have total six runs in these two experiments and we
can approximate one round of background resolution
as:

rounds
numberTotalmessagesof ___# = … (5)

and the final value is (168+96)/6, which is 44.
Second, because the average size of exchanged

messages varies from application to application, we
use a parameter s to denote it and practitioners should

Figure 10: An automatic system

substitute it with any real value they have. Thus the
one round communication cost of background
resolution in the experimentation setup is c = 44*s. At
this point, practitioners can use the derived c value to
derive an optimal rate based on system’s ongoing load
by following Formula 4.

Finally, because the communication cost scales
linearly with the size of top layer, the communication
cost (thus the optimal rate of background resolution)
for a particular application can be extrapolated
according to its typical top layer size.

In addition to the trade-off, there is also an issue
with respect to preventing underselling and
overselling, which is unique to this airline ticket
booking application. Detailed discussion about this
issue and possible solutions were presented previously
in Section 5.2.

7. Related Work

We discuss related works of IDEA from three
aspects: (1) the tradeoff between consistency level and
data availability; (2) the mechanisms to achieve
adaptive control of consistency in distributed systems;
and (3) the systems that IDEA can potentially work
with to improve their consistency control.

7.1. Tradeoff between consistency level and
data availability

In terms of the tradeoff between consistency level
and data availability, probably the most closely related
work to this paper is TACT [26]. Recognizing the
inherent tradeoff between consistency level and
performance and the rich semantics of this tradeoff,
TACT proposed a set of parameters to measure the
consistency level of an application and developed

 17

algorithms to bound the inconsistency within the
system in a certain level. While IDEA uses TACT’s
definition to quantitatively define consistency level, it
is significantly different with TACT because it is a
detection-based consistency control scheme. Instead of
tightly bound a system’s predefined consistency level
as was the case in TACT, IDEA recognizes that
different applications may have different requirements
for consistency and that one application’s requirement
for consistency can change from time to time, and
explores the design space of efficient inconsistency
detection to adaptively maintain acceptable
consistency level based on applications’ semantics.

7.2. Adaptive consistency control

To achieve the adaptability of consistency control,
Yang and Li [25] have proposed a framework that puts
a set of existing consistency protocols in a central
module and the, based on the current application’s
characteristics, attaches the right consistency protocol
dynamically and adaptively. While their work has the
benefit of accommodating existing protocols, our work
is advantageous in the sense that there is only one
protocol that is needed to be deployed, which greatly
simplifies the system design.

In the perspective of consistency resolution, Om
[27] maintains consistency among replicas by
automatically generating a consistent replica from a
quorum system. Unlike Om, which focuses on the
automatic generation of consistent copies, IDEA caters
to applications’ requirement by generating consistent
copies on demand. More specifically, while Om
imposes a two-layer replication scheme to enforce
strong consistency; IDEA, targeting a wide range of
applications that can benefit from the trade-off
between consistency level and performance, enforces
consistency control based on applications’ semantics.

7.3. Systems that IDEA can work with

A number of Peer-to-Peer file systems [5, 10, 18,
22] use replication-based scheme to prevent data loss.
However, they either assume that the files are read
only, or use optimistic consistency control as a default
option. Designed as an infrastructure to enforce
consistency based on applications’ ongoing
requirement of consistency, IDEA focuses primarily on
consistency issue and complements these Peer-to-Peer
file systems. In theory, IDEA can work perfectly with
these replication-based systems to improve their
usability and performance from the perspective of
consistency control.

This work can also be broadly put into the realm of
autonomic computing because IDEA makes effort to
meet applications’ ever-changing requirement.
However, previous work in autonomic computing does
not consider applications’ consistency requirements
[13, 21], which is indeed important for replication-
based distributed systems. In this sense, IDEA also
makes contribution in the autonomic computing arena
from the perspective of consistency control.

8. Conclusions and Future Work

In this paper, we presented the design,
implementation, and evaluation of IDEA, an
infrastructure for detection-based adaptive consistency
control. As an alternative to conventional consistency
control approaches, IDEA achieves adaptable, yet
efficient, consistency control by detecting
inconsistency among nodes in a timely manner and
resolving the inconsistencies based on applications’
ongoing requirement of consistency. Detailed design
of IDEA, including its interaction with applications, is
discussed.

A prototype of IDEA was deployed on Planet-Lab
and two emulated applications, a distributed white
board and an airline ticket booking application, are
used to evaluate the adaptability interface and
resolution efficiency of IDEA. Through the
experimentation, we validated the adaptive interface of
IDEA and showed the performance of IDEA in terms
of low resolution delay and low communication cost it
incurred.

In the future, we plan to investigate the implications
of IDEA by deploying it to other distributed
applications and use IDEA as a building block to
improve the applications’ usability in terms of
consistency.

References

[1] P. Bober and M. Carey, Multiversion Query Locking, in

Proc. of 18th Conference on Very Large Databases, San
Francisco, CA, USA, 1992. pp. 497-510.

[2] H. Chandler, The Complexity of Online Groups: A Case
Study of Asynchronous Distributed Collaborations,
ACM Journal of Computer Documentation, 2001, 25,
(1): 17-24.

[3] T. Chang, G. Popsecu, and C. Codella, Scalable and
Efficient Update Dissemination for Interactive
Distributed Applications, in Proc. ICDCS 2002, Viena,
Austria, July, 2002.

[4] D. Dullmann, W. Hoschek, J. Jaen-Martinez, B. Segal,
A. Samar, H. Stockinger, and K. Stockinger, Models for
Replica Synchronization and Consistency in Data Grid,
In Proc. of 10th IEEE International Symposium on High

 18

Performance Distributed Computing (HPDC), Aug. 7-9,
pp. 67-75, 2001

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica. Wide-area Cooperative Storage with CFS. In
Proc. of the 18th ACM Symposium on Operating
Systems Principles, October 2001.

[6] P. T. Eugster, R. Guerraoui, S. B. Handurukande, etc.
Lightweight Probabilistic Broadcast, In DSN 2001.

[7] C. Huang, S. Sebastine, and T. Abdelzaher, An
Architecture for On-Demand Active Web Content
Replication, 16th Euromicro Conf. on Real-Time
System, July 2004.

[8] J. Kistler and M. Satyanarayanan, Disconnected
Operation in the Coda File System, ACM Transaction
on Computer Systems, 10(1) pp. 3-25, Feb. 1992.

[9] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A.
Vahdat. Using Random Subset to Build Scalable
Network Services, In Proc. of USENIX USITS 2003.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage, In Proc. of ACM
ASPLOS, Nov. 2000.

[11] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.
Tantawi, and A. Youssef, "Performance management
for cluster based web services," in Proceedings of the
IFIP/IEEE International Symposium on Integrated
Network Management, (Colorado Springs, CO), March
2003.

[12] C. Liao, M. Martonosi, and D. W. Clark, “Experience
with an adaptive globally-synchronizing clock
algorithm,” in Proc. of ACM Symposium on Parallel
Algorithms and Architectures, Saint Malo, France,
1999, pp. 106-114.

[13] H. Liu, and M. Parashar, Enabling Self-management of
Component-based High-Performance Scientific
Applications, In Proc. of HPDC-14, Research Triangle
Park, NC, July 24-27. pp. 59-68.

[14] Y. Lu and H. Jiang, A Framework for Efficient
Inconsistency Detection in a Grid and Internet-Scale
Distributed Environment, In Proc. of HPDC-14. pp.
318-319.

[15] Y. Lu, H. Jiang, and D. Feng, An Efficient, Low-Cost
Inconsistency Detection Framework for Data and
Service Sharing in an Internet-Scale System. In Proc. of
IEEE ICEBE 2005.

[16] Y. Lu, X. Li, and H. Jiang, IDF: an Inconsistency
Detection Framework – Performance Modeling and
Guide to Its Design, Technical Report TR-UNL-CSE-
2006-0003, University of Nebraska-Lincoln, March
2006

[17] D. L. Mills, “A brief history of NTP time: memoirs of
an Internet timekeeper,” ACM SIGCOMM Computer
Communication Review, Vol. 33, Issue 2, April 2003.
pp. 9-21.

[18] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen,
Ivy: A Read/Write Peer-to-Peer File System, OSDI
2002

[19] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B.
Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, and
C. Kline, Detection of mutual inconsistency in
distributed systems. In IEEE Transactions on Software
Engineering, 9(3), pp. 240-247, 1983

[20] L. Perterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet, In Proc. of ACM HotNets-1 workshop.

[21] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot:
Adaptive Control of Distributed Applications. In Proc.
of HPDC-7, July 28-31, 1998. pp. 172-179.

[22] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-scale, Persistent Peer-to-peer
Storage Utility. In Proc. of the 18th ACM Symposium
on Operating Systems Principles, October 2001.

[23] M. Stonebraker, Concurrency Control and Consistency
of Multiple copies of Data in Distributed INGRES,
IEEE Transactions on Software Engineering, 5(3), May
1979

[24] D. B. Terry, M. M. Theimer, K,. Petersen, A. J. Demers,
M. J, Spreitezer, and C. H. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System, In Proc. of the Fifteenth ACM SOSP,
1995

[25] Y. Yang and D. Li, Separating Data and Control:
Support for Adaptable Consistency Protocols in
Collaborative Systems, ACM CSCW 2004, Chicago,
Illinois, Nov. 2004, pp. 11-20.

[26] H. Yu and A. Vahdat, Design and Evaluation of a
Continuous Consistency Model for Replicated Services,
In Proc. of OSDI 2000.

[27] H. Yu and A. Vahdat, Consistent and Automatic
Replica Regeneration, In. Proc. NSDI 2004.

 19

	1. Introduction
	2. The Overview of IDEA
	3. Targeted Applications
	3.1. Distributed white board system
	3.2. Airline ticket booking system

	4. The Design of IDEA
	4.1. The two-layer infrastructure
	4.2. Overview of the IDEA protocol
	4.3. Efficient inconsistency detection
	4.4. Quantifications of consistency level
	4.4.1. A scenario
	4.4.2. Accuracy of the calculation
	4.5. Inconsistency resolution
	4.5.1. Resolution mechanisms
	4.5.2. Background and active resolution
	4.6. Adaptive consistency control
	4.7. IDEA APIs

	5. Apply IDEA to Applications
	5.1. Distributed white board system
	5.2. Airline ticket booking system

	6. Evaluation
	6.1. The adaptive interface of IDEA
	6.2. IDEA’s response time
	6.3. IDEA’s communication overhead
	6.3.1. The communication overhead
	6.3.2. The trade-off

	7. Related Work
	7.1. Tradeoff between consistency level and data availabilit
	7.2. Adaptive consistency control
	7.3. Systems that IDEA can work with

	8. Conclusions and Future Work
	References

