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Abstract 
 

To maintain consistency, designers of replicated 
services have traditionally been forced to choose from 
either strong consistency guarantees or none at all. 
Realizing that a continuum between strong and 
optimistic consistencies is semantically meaningful for 
a broad range of network services, previous research 
has proposed a continuous consistency model for 
replicated services to support the tradeoff between the 
guaranteed consistency level, performance and 
availability. However, to meet changing application 
needs and to make the model useful for interactive 
users of large-scale replicated services, the adaptability 
and the swiftness of inconsistency resolution are 
important and challenging.  

This paper presents IDEA (an Infrastructure for 
DEtection-based Adaptive consistency guarantees) for 
adaptive consistency guarantees of large-scale, 
Internet-based replicated services. The main functions 
enabled by IDEA include quick inconsistency 
detection and resolution, consistency adaptation and 
quantified consistency level guarantees. Through 
experimentation on the Planet-Lab, IDEA is evaluated 
from two aspects: its adaptive consistency guarantees 
and its performance for inconsistency resolution. 
Results show that IDEA is able to provide consistency 
guarantees adaptive to user’s changing needs, and it 
achieves low delay for inconsistency resolution and 
incurs small communication overhead. 

 
1. Introduction 
 

Replicating data and services in distributed systems 
is an attractive strategy to increase availability and 
performance. For large-scale, Internet-based systems, 
replication may indeed be the only way to provide 
continuous services and to avoid data loss in the 
presence of unreliable Internet connections [3, 16]. In 
this environment, consistency control has become 
critical because poor consistency for replicated 
services results in poor QoS and even monetary losses 
for e-business applications. The dilemma is, on the one 
hand strong consistency [1] is very costly to maintain, 
while on the other hand optimistic consistency [4, 13, 
14] can be too weak in certain scenarios [3]. Realizing 

that many applications are willing to sacrifice a certain 
degree of consistency for scalability, recent research 
has [16] proposed a continuous consistency model to 
support the tradeoff between a guaranteed consistency 
level and the desired scalability.  

In this paper, we argue that it is equally, if not more, 
important to achieve adaptability in consistency 
control.  

First, a system should be able to adjust the 
consistency levels for different objects on the fly, as 
opposed to maintaining a predefined consistency level 
for all objects. This is important because multiple 
applications with different consistency requirements 
can run simultaneously in a distributed system. While 
several consistency protocols can be deployed at the 
same time to cater to different applications, it would 
inevitably increase the complexity of the system design 
[15]. Besides, some application’s requirement for 
consistency changes from time to time. Take online 
conference as an example. Users require higher 
consistency when an important speech is going on 
while they are willing to tolerate lower consistency for 
better performance otherwise [2]. In this scenario, a 
predefined protocol is incapable of capturing the 
semantic.  

Second, users should have the control on how 
system adjusts the consistency levels for their objects. 
The system could start with maintaining a default 
consistency level for an object. Dynamically, users 
should be able to adjust the consistency when they are 
not satisfied or when their needs change. This way, 
although users may not be good at expressing their 
desired levels in quantitative terms, they could 
determine on the fly whether or not a given consistency 
level is adequate and accordingly control the system to 
get what they want. 

To support interactive users of large-scale replicated 
services, it is also important that our system achieves 
high performance for the consistency control. That is, 
our system should be able to quickly detect 
inconsistencies and, when necessary, to resolve them in 
a timely manner. This is crucial because slow 
inconsistency detection and resolution will lead to poor 
QoS and cause user frustrations.  

To this end, we present IDEA (an Infrastructure for 
DEtection-based Adaptive consistency guarantees) that 
achieves both adaptability and high-performance goals. 



For the adaptability, IDEA adjusts the consistency 
levels on the fly through interactions with users. Upon 
the detection of inconsistencies, IDEA resolves them if 
the current consistency level does not satisfy user 
requirements; otherwise, inconsistencies will not be 
resolved unless the system is lightly loaded. For high 
performance, we extend our previous work [6, 7] and 
design fast inconsistency detection and resolution in 
IDEA.   

To validate the design, we implement an IDEA 
prototype on the Planet-Lab [12]. On top of it, we 
emulate two applications, a distributed white board 
system and an airline ticket booking system. 
Collectively, they show that IDEA achieves the design 
goals of adaptability and high performance in 
consistency guarantees.  

This paper has two contributions. First, we point out 
the importance of adaptability in consistency control 
and present IDEA to provide this adaptability. Second, 
we demonstrate the effectiveness of IDEA and its high 
performance by deploying a prototype on Planet-Lab. 
     
2. Design 

 
We assume that IDEA works with a general 

distributed file system that handles the ordinary read 
and write operations. As shown in Figure 1, IDEA is 
deployed in the middleware level. Applications on 
different nodes consult IDEA when they access files. 
Upon initiating an application, a user may choose to 
give a hint on his or her acceptable consistency level.  
The desired consistency level L1 for an object will be 
set according to the hint or to a default value. (Note: 
throughout the paper, the terms object and file are used 
interchangeably.) 

 
2.1. A Two-Layer Infrastructure 
 

We build IDEA on top of a two-layer infrastructure. 
This infrastructure is first introduced by the authors in 
[6, 7]. It constructs a two-layer overlay for each object 
of the system, where the top layer includes those nodes 
that frequently update this object and the bottom layer 
consists of the remaining nodes.  
     Two reasons motivate us to adopt this two-layer 
architecture. First, it is very unlikely that participants 
in a large application are all interested in modifying the 
same object at the same time. Thus it is expected that 
all active writers form a much smaller subset of the 
whole participant group. Second, the small size of the 
top layer implies that it is much faster to detect and 
resolve inconsistencies among members of the top 
layer than that of the whole group. 

 
Figure 1: IDEA: a middleware service 

 
2.2. Protocol 
 
     An outline of the IDEA protocol is depicted in 
Figure 2. It is triggered by two operations: write and 
certain read operations. Because the write operation, 
such as issuing an update to a white board, will cause 
inconsistency among replicas, it triggers the IDEA 
protocol. For read operations, the IDEA protocol is 
triggered when a user tries to retrieve a new file, such 
as a new snapshot of a white board, because in this 
case the system needs to make sure that the file 
retrieved is sufficiently consistent for the user. For 
other reads whether or not the protocol is triggered 
depends on the context: if the file is frequently updated 
locally, the reads will not trigger the IDEA protocol; 
otherwise they will. 

After the protocol is triggered, it uses a detection 
mechanism to identify the inconsistency and then a 
customized mechanism to quantify the consistency 
level for a particular user. After the consistency level is 
calculated, IDEA checks whether it is acceptable, i.e., 
above the level desired for the user. If acceptable, 
IDEA returns the file to the user; otherwise, IDEA 
resolves the inconsistency.  

To achieve good responsiveness, IDEA first 
calculates the consistency level only among the top-
layer nodes. This value may not be accurate because, 
albeit rather infrequently, the bottom layer nodes can 
also introduce inconsistencies. Hence, we deploy a 
rollback mechanism to solve this problem. After the 
file is returned from IDEA, users could proceed with 
their work. However, in the background IDEA 
continues to detect inconsistency in the bottom layer 
and calculates a new consistency level for the file. If 
the new value is sufficiently close to that obtained from 
the top layer, no action is needed; otherwise, IDEA 
alerts the user about the discrepancy and, upon the 
user’s request, resolves the inconsistency and rolls 
back the user’s operations.  

 
 



 
Figure 2: The IDEA protocol 

 
2.3. Inconsistency Detection 
 

To provide consistency guarantees, the 
inconsistency detection is the first component of 
IDEA. We have proposed in [6, 7] an efficient, low-
cost inconsistency detection mechanism. IDEA adopts 
that for detecting inconsistencies.  
     The conflicts of two or more updates, i.e., the 
inconsistencies among different replicas, are detected 
through exchanges of version vectors [11]. A version 
vector tracks the number of times a file is updated by 
certain users. For example, version vector (A:3 B:5) 
means that user A has modified the file three times and 
user B has modified it five times. So the replica 
represented by this version vector is considered more 
obsolete than that presented by version vector (A:4 
B:7). Two replicas are inconsistent if their version 
vectors are different. By exchanging version vectors in 
the two-layer infrastructure [6, 7], most inconsistencies 
are detected in the top layer. Our previous research [8] 
has shown that 95% of inconsistencies are quickly 
detected in the top layer. 
 
2.4. Consistency Level Quantifications  
 

    This section describes how IDEA quantifies the 
object consistency level for a user. We first extend the 
object version vector and then borrow the <numerical 
error, order error, staleness> metric from the TACT 
continuous consistency model [16] to quantify the 
consistency.  
     The current version vector [11] only tells the 
number of updates from individual writers. It is not 
sufficient for our purpose. Thus we design an extended 
version vector. As illustrated in Figure 3, the extended 
version vector includes several new items.  
     First, the extended version vector has timestamps 
associated with each update. For example, <A:2(1, 2)> 
means that the two updates from user A happen at time 
points 1 and 2. We assume that the differences among 
clocks of participating nodes are within seconds. This 
can be achieved by running a clock synchronization 
algorithm such as the one proposed in [5], or by letting 
all participating nodes use NTP (Network Time 
Protocol) [10] to synchronize with a time sever. This 
way the timestamps of different nodes become 
comparable.  
     Second, we use a numerical value in square 
brackets, for instance <… [5] …>, to represent some 
critical metadata for the application. It is used to 



characterize the value difference of different replicas. 
For examples, in the case of a distributed white board, 
the metadata could be the sum of the ASCII values of 
the few recent local updates; while in an airline ticket 
booking system, the metadata could be the total sale 
price. The differences in these metadata indicate the 
effect of the conflicts.   
     Third, the <numerical error, order error, staleness> 
triple is attached at the end of the extended version 
vector. The numerical error is derived by comparing 
the metadata values; the order error counts the 
difference between numbers of updates and the 
staleness is calculated from the timestamps.  
    Because IDEA adopts this extended version vector, 
for brevity we will simply use the term “version 
vector” to refer to the “extended version vector” in the 
remaining of the paper. 
     We now illustrate how to quantify the consistency 
level. Assume that an object has two active writers (A 
and B) and two associated replicas (a and b). And after 
several updates, a and b’s version vectors are 
<A:2(1,2) B:0 [5] 0 0 0 > and <A:0 B:1(3) [2] 0 0 0 > 
respectively. 
     IDEA first derives a reference consistent state. It is 
a state that is considered as the basis for the 
consistency level evaluation. In Section 2.5 we will 
show that there are multiple ways to derive the 
reference consistent state. For now, let us assume that 
if two replicas are in conflict with each other, the 
replica with higher ID value becomes the reference. 
Thus, for the above example b is considered in the 
reference consistent state and is used to calculate the 
consistency levels for replicas a and b. 
     To quantify the consistency levels, the <numerical 
error, order error, staleness> triples are first 
computed, where the numerical error is derived from 
the metadata values; the order error counts the 
difference between numbers of updates and the 
staleness is defined as the time difference between the 
most recent update in the reference consistent state and 
the last time when the replica is consistent with the 
reference. For replica a, since its metadata differs in 3 
units from that of b (the reference state), its numerical 
error is 3; replica a misses one and has two extra 
updates, so its order error is 3; finally, the last time 
when a is consistent with b is at time point 1, the most 
recent update at b is at time point 3, and their 
difference is 2, so the staleness of replica a is 2. After 
the calculation, a’s version vector becomes <A:2(1,2) 
B:0 [5] 3 3 2 >. The version vector remains <A:0 
B:1(3) [2] 0 0 0 > for replica b because b is in the 
reference consistent state.  
    IDEA quantifies the consistency levels using the 
maximum values and customized weights of the 
<numerical error, order error, staleness> triple. For 
example, if the order error is always less than 10, then  

 
Figure 3: Extended version vector 

 
the maximum value of the order error (max_order)  can 
be set to 10. The weights (num_weight, order_weight, 
and stale_weight) on numerical error, order error, and 
staleness are customized for individual user of the 
object and they can be adapted according to the user’s 
changing needs (Section 2.8). For example, if a user 
weighs the three types of errors equally, num_weight, 
order_weight, and stale_weight will all be 33.3%. For 
a user, the consistency level of a replica is quantified 
by the following equation: 
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2.5. Inconsistency Resolution Policies 
 
     After detecting inconsistencies and quantifying the 
consistency level, IDEA checks whether or not the 
consistency is above the user’s desired level. If not, 
IDEA invokes the inconsistency resolution module to 
provide the user with the consistency guarantee.  
     Given two replicas, if their version vectors u and v 
are different, they are inconsistent. In the presence of 
inconsistencies, IDEA will derive a reference 
consistent state for the object. There are multiple ways 
to derive the reference consistent state. Which method 



to apply is determined by the inconsistency resolution 
policy. Several typical policies are presented in this 
section. 
    Two version vectors are comparable if and only if u 
< v, u = v, or u > v. When comparable, it is 
straightforward  we should always use the latest 
replica, i.e., the replica with the bigger version vector. 
That replica therefore defines the reference consistent 
state. The decision becomes difficult when the version 
vectors are incomparable. For example, <A:2(1,2) B:0 
[5] 0 0 0 > is not comparable with <A:0 B:1(3) [2] 0 0 
0 > because the first item, the number of updates by A, 
of the first vector is bigger but its second item,  the 
number of updates by B is smaller. In this case, the 
best choice of the reference consistent state is not 
obvious. To solve this problem, three different policies 
are listed and their applications are discussed as 
follows.  

 
• Invalidate Both. Following this inconsistency 

resolution policy, both of the conflicting 
versions are considered invalid and they will be 
rolled back to a previous consistent state. That 
state is thus defined as the reference consistent 
state. For example, in a distributed white board 
system, two simultaneous updates at the same 
spot can be both cleared to prevent ambiguity 
and to ensure fairness (i.e., no one is more 
important than the other). 

• ID-Based. In this policy, each node is assigned 
a random ID, like a hash value of their IP 
address via MD5 (a commonly used hash 
function in Peer-to-Peer systems). When 
detecting a conflict of version vectors, the 
system chooses the node with a larger ID and 
considers its replica to be in the reference 
consistent state. This approach can be used in 
both a distributed white board system and an 
airline ticket booking system when users prefer 
progresses to fairness. Unlike the invalidate 
both policy where updates are rolled back, this 
approach always proceeds with the discussion in 
a white board system and sells more tickets in 
an airline ticket booking system.  

• Priority-Based. This policy assigns different 
priorities to users. When a conflict arises, the 
higher-priority user wins and his or her replica 
is chosen as the reference. For instance, a 
supervisor could have a higher priority than 
employees of a company. Thus the supervisor’s 
updates on a white board are always preserved. 
In an airline ticket booking system, higher 
priorities should be given to preferred customer 
groups.   

 

2.6. Background & Active Resolutions 
 

IDEA invokes the consistency resolution in two 
ways, referred to as background and active resolutions.  

To improve the consistency level, the background 
resolution resolves inconsistencies periodically. It 
invokes resolution without the user’s intervention.  

Unlike the background resolution, the active 
inconsistency resolution is triggered by a user or by 
IDEA when the consistency level is not acceptable. 
Upon the resolution request, the nearest replica acts as 
the initiator and starts a two-phase protocol. The 
initiator first sends a request to all top layer nodes to 
call for attention to the upcoming resolution process. If 
no one else is initiating the same process, the initiator 
will get positive acknowledgements from all top layer 
nodes, and start the resolution procedure. However, if 
someone else has sent out the same request, this 
initiator will back-off and retry after a random period. 
Here back-off is used to avoid redundant resolutions 
and to save bandwidth. During the back-off period, if 
the initiator receives a notice that the requested 
resolution has been started by someone else, this 
initiator will simply cancel the retry process.  

Once the resolution is started, the procedure is the 
same for the background and active approaches. IDEA 
sequentially visits all top layer nodes and collects the 
replica version vectors. By following a resolution 
policy presented in Section 2.5, IDEA derives the 
reference consistency state and determines updates that 
are needed for building the consistent replica. It then 
sends the information to top layer nodes and other 
involved members to let them construct or retrieve the 
consistent replica. 
 
2.7. Control the Adaptation 
 

Broadly speaking, IDEA provides three 
mechanisms for controlling the adaptation that cater to 
different application semantics. 

 
• Hint-Based. Following this scheme, users could 

specify the consistency levels that might satisfy 
their needs in advance. IDEA then guarantees 
their perceived consistencies are always above 
the desired levels.  

• On-Demand. This scheme provides users with a 
way to dynamically adjust the consistency when 
they are not satisfied or when their needs 
change. This way, although users may not be 
good at expressing their desired levels in 
quantitative terms (i.e., hints), they could still 
determine on the fly whether or not the 
guaranteed consistency is adequate and control 
the system accordingly. 



• Fully Automatic. IDEA also provides a 
mechanism to balance between the consistency 
and the overhead, where best-effort 
consistencies are maintained without violating 
the system overhead constraints. In this scheme, 
IDEA applies background resolution, whose 
invocation frequency is determined by the 
allowed overhead. A potential application of this 
scheme is the airline ticket booking system. For 
example, if the consistency overhead is deemed 
not to exceed 20% of the system capacity so that 
enough resources will be used to process 
customer requests, then the frequency of IDEA 
background resolution should be adjusted 
accordingly.  

   
2.8. User Interface 

 
We provide users with an interface to control how 

IDEA adjusts the consistency levels for their objects. 
Before starting the application, users could give hints 
on their required consistency. As explained in Section 
2.4, IDEA quantifies the consistency level using the 
values and customized weights of the <numerical 
error, order error, staleness> triple. Since different 
users may weigh the three types of errors differently 
for different applications, the interface allows users to 
customize the weights (num_weight, order_weight, and 
stale_weight) as well as the desired consistency level.  

However, users may not know how to quantify their 
desired levels and weights beforehand. Moreover their 
needs could change dynamically. Therefore, IDEA also 
provides users with an interface to adjust their 
preferences on demand. Via the interface, users could 
communicate with IDEA and provide feedback on their 
satisfaction with the consistency and the system 
responsiveness. If a user prefers better responsiveness 
to consistency, IDEA will lower his or her desired 
consistency level and thus improve the system 
responsiveness. If it is the consistency that is not 
acceptable, a user could control the guaranteed 
consistency level by adjusting the weights or boosting 
the desired level.  

Take the distributed white board system as an 
example. In the system, numerical error denotes the 
metadata difference of replicas; order error measures 
the update sequence error; and staleness reflects the 
replica’s up-to-dateness. Among them, the order error 
is a common and the most confusing error because 
white board writes make sense only if they are placed 
in order. Thus, if white board users prefer order 
preservation to reduced staleness, IDEA could give 
more weight to the order error such as assigning 70% 
to order_weight and 10% to stale_weight.  

 

3. Evaluation 
 

Three metrics—consistency level, delay, and 
communication overhead—are used to evaluate the 
adaptability and performance of IDEA.  

 
3.1. Adaptive Guarantees 
 

We emulate a distributed white board application to 
show the effectiveness of IDEA in achieving the 
consistency guarantee and adaptability. In this 
application, a participant uses the IDEA interface to 
indicate a desired consistency level. We assume when 
consistency is above the specified level, the user is 
satisfied. Thus, IDEA should provide the quantified 
consistency level guarantee. In addition, when needs 
change and the user is no longer satisfied with the 
guaranteed consistency level, he or she should be able 
to control IDEA and adjust the consistency. 

We run the experiments on forty Planet-Lab [12] 
nodes, among which four of them are concurrent 
writers of a given file. After the system warms up, the 
four nodes become the top layer of the file. To carry 
out experiments in an Internet scale, the forty nodes are 
chosen from all over US and Canada. In addition, the 
concurrent writers are carefully chosen to be far apart 
from each other.  

In this group of experiments, each of the four 
writers issues an update every 5 seconds. Thus during a 
100-second experiment period, there are totally 20 
updates per writer. For the first two experiments, the 
desired consistency levels are set at 95% and 85% 
respectively. Therefore, IDEA begins to resolve 
inconsistencies when the consistency level is below 
95% or 85%. In Figures 4(a) and 4(b), we show the 
experiment results, where the “view from the user” 
curve presents the consistency perceived by the first 
writer who triggers the IDEA active inconsistency 
resolution and the “system average” curve is the 
average consistency level of all writers. As 
demonstrated by the curves, the consistency levels 
improve right after IDEA invokes the active resolution. 
After the resolution, the consistency is guaranteed to be 
above the desired level (95% or 85%).  

In both scenarios, IDEA is able to resolve 
inconsistencies fairly quickly. Since we only sample 
the system once every five seconds, all we can tell 
from the two figures is that the consistency is brought 
back in less than five seconds. As measured in Section 
3.2, it actually takes only 315ms to actively resolve the 
inconsistencies.  

In the third experiment, we evaluate IDEA for its 
consistency adaptability. The experiment runs for 200 
seconds, where initially the desired consistency level is 
set at 95% and after 100 seconds it is changed to 90%. 
From Figure 5, we can see that once the consistency 



falls below the current desired level, IDEA resolves 
inconsistencies to provide the consistency guarantee. 
Clearly the adaptation of the guaranteed consistency 
level is achieved.  

 
3.2. Responsiveness 
 

This section uses the distributed white board 
application to evaluate the delay of inconsistency 
resolution, i.e., the responsiveness of IDEA. Assume 
that a user adapts the desired consistency level on-
demand and triggers the active resolution because he or 
she is not satisfied with the current consistency level. 
In this scenario, it is important that IDEA quickly 
resolves inconsistencies and guarantees the user the 
desired consistency level.  

To measure the average delay, we run the active 
inconsistency resolution four times and each time we 
pick a different writer to initiate the request. The final 
result reflects the average resolution delay of the four 
runs. Table 1 shows the average delay per active 
inconsistency resolution. It breaks down into two 
phases: the call-for-attention as phase one and the 
actual resolution as phase two (Section 2.6). As 
confirmed by the data, phase one is executed much 
faster than phase two. There are two reasons. First, the 
operation in phase one is only a call-for-attention, thus 
it causes little computation overhead, compared to the 
actual resolution process in phase two, which involves 
collecting and analyzing the information of replicas, 
deriving a consistent state and constructing a consistent 
replica. Second, the call-for-attentions to different 
nodes are executed in parallel, which further improves 
its efficiency; while for the second phase, our current 
implementation involves sequential visits of all top 
layer members.  

Based on the data collected, we extrapolate the 
performance of IDEA in a more dynamic environment 
where there are more simultaneous writers. This is 
used to analyze the scalability of the IDEA 
inconsistency resolution. Because phase one is 
executed in parallel, its performance does not change 
significantly with the top layer size. On the other hand, 
since phase two operations are executed sequentially, 
its delay is estimated to increase linearly with the top 
layer size. The results shown in Table 1 are based on a 
top-layer of four nodes, where, when resolving 
inconsistencies, one node initiates the operation and 
the other three nodes are contacted sequentially. Thus, 
on average it takes about 104.747 (i.e., 314.141 / 3) ms 
to process one top layer node. Consequently, the 
response time of active resolution for an n-node top 
layer is extrapolated as follows: 

 

 
 

Figure 4(a): Resolution guarantees 
consistency level ≥ 95%  

 

 
 

Figure 4(b): Resolution guarantees 
consistency level ≥ 85% 

 

 
 

Figure 5: Adaptive guarantees  
 
 



 Average delay in one round of active 
resolution 

Phase1 0.46825 ms 
Phase2 314.241 ms 

 
Table 1: Delay of active resolution 

 
Delay = 0.46825 + 104.747 * (n-1)  … (2) 
 
Besides the active resolution, we have also 

introduced the background resolution in Section 4.6. 
One round of background resolution essentially 
consumes the same amount of time as the phase two of 
the active resolution. Thus its delay is approximated by 
the following equation:  

 
Delay = 104.747 * (n-1)                             … (3)    
 
We can clearly see that even with ten simultaneous 

writers, which is highly unlikely in practice, the cost of 
active or background resolution is still below one 
second. We believe that this is a reasonably good 
performance because in a large-scale distributed 
system it is not uncommon that a message is delayed 
for seconds or more [3], thus offsetting the impact of 
the delay caused by IDEA. Nonetheless, if 
performance is a concern, to further improve the 
responsiveness of IDEA, a parallel resolution 
mechanism can be easily implemented and deployed 
(i.e., to let the initiator contact all top layer nodes in 
parallel).  

 
3.3. Communication Overhead 
 

 To study the communication overhead, we emulate 
on IDEA an airline ticket booking system, which 
mainly applies the background inconsistency 
resolution. Due to page limit, the detailed 
experimentation is omitted, but the main result is that 
IDEA incurs minimal communication overhead. The 
details of this experiment and how users can set the 
resolution frequency so as to satisfy the system 
overhead constraint can be found in [9].  
      
4. Conclusion 
 

In this paper, we made two contributions. First, we 
point out the importance of adaptive consistency 
guarantees and design IDEA to provide this service. 
Second, we implement and deploy an IDEA prototype 
on the Planet-Lab to show its adaptability.  
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