
Adaptive Consistency Guarantees for Large-Scale Replicated Services

Yijun Lu, Ying Lu, and Hong Jiang
Department of Computer Science and Engineering, University of Nebraska-Lincoln

{yijlu, ylu, jiang}@cse.unl.edu

Abstract

To maintain consistency, designers of replicated
services have traditionally been forced to choose from
either strong consistency guarantees or none at all.
Realizing that a continuum between strong and
optimistic consistencies is semantically meaningful for
a broad range of network services, previous research
has proposed a continuous consistency model for
replicated services to support the tradeoff between the
guaranteed consistency level, performance and
availability. However, to meet changing application
needs and to make the model useful for interactive
users of large-scale replicated services, the adaptability
and the swiftness of inconsistency resolution are
important and challenging.

This paper presents IDEA (an Infrastructure for
DEtection-based Adaptive consistency guarantees) for
adaptive consistency guarantees of large-scale,
Internet-based replicated services. The main functions
enabled by IDEA include quick inconsistency
detection and resolution, consistency adaptation and
quantified consistency level guarantees. Through
experimentation on the Planet-Lab, IDEA is evaluated
from two aspects: its adaptive consistency guarantees
and its performance for inconsistency resolution.
Results show that IDEA is able to provide consistency
guarantees adaptive to user’s changing needs, and it
achieves low delay for inconsistency resolution and
incurs small communication overhead.

1. Introduction

Replicating data and services in distributed systems
is an attractive strategy to increase availability and
performance. For large-scale, Internet-based systems,
replication may indeed be the only way to provide
continuous services and to avoid data loss in the
presence of unreliable Internet connections [3, 16]. In
this environment, consistency control has become
critical because poor consistency for replicated
services results in poor QoS and even monetary losses
for e-business applications. The dilemma is, on the one
hand strong consistency [1] is very costly to maintain,
while on the other hand optimistic consistency [4, 13,
14] can be too weak in certain scenarios [3]. Realizing

that many applications are willing to sacrifice a certain
degree of consistency for scalability, recent research
has [16] proposed a continuous consistency model to
support the tradeoff between a guaranteed consistency
level and the desired scalability.

In this paper, we argue that it is equally, if not more,
important to achieve adaptability in consistency
control.

First, a system should be able to adjust the
consistency levels for different objects on the fly, as
opposed to maintaining a predefined consistency level
for all objects. This is important because multiple
applications with different consistency requirements
can run simultaneously in a distributed system. While
several consistency protocols can be deployed at the
same time to cater to different applications, it would
inevitably increase the complexity of the system design
[15]. Besides, some application’s requirement for
consistency changes from time to time. Take online
conference as an example. Users require higher
consistency when an important speech is going on
while they are willing to tolerate lower consistency for
better performance otherwise [2]. In this scenario, a
predefined protocol is incapable of capturing the
semantic.

Second, users should have the control on how
system adjusts the consistency levels for their objects.
The system could start with maintaining a default
consistency level for an object. Dynamically, users
should be able to adjust the consistency when they are
not satisfied or when their needs change. This way,
although users may not be good at expressing their
desired levels in quantitative terms, they could
determine on the fly whether or not a given consistency
level is adequate and accordingly control the system to
get what they want.

To support interactive users of large-scale replicated
services, it is also important that our system achieves
high performance for the consistency control. That is,
our system should be able to quickly detect
inconsistencies and, when necessary, to resolve them in
a timely manner. This is crucial because slow
inconsistency detection and resolution will lead to poor
QoS and cause user frustrations.

To this end, we present IDEA (an Infrastructure for
DEtection-based Adaptive consistency guarantees) that
achieves both adaptability and high-performance goals.

For the adaptability, IDEA adjusts the consistency
levels on the fly through interactions with users. Upon
the detection of inconsistencies, IDEA resolves them if
the current consistency level does not satisfy user
requirements; otherwise, inconsistencies will not be
resolved unless the system is lightly loaded. For high
performance, we extend our previous work [6, 7] and
design fast inconsistency detection and resolution in
IDEA.

To validate the design, we implement an IDEA
prototype on the Planet-Lab [12]. On top of it, we
emulate two applications, a distributed white board
system and an airline ticket booking system.
Collectively, they show that IDEA achieves the design
goals of adaptability and high performance in
consistency guarantees.

This paper has two contributions. First, we point out
the importance of adaptability in consistency control
and present IDEA to provide this adaptability. Second,
we demonstrate the effectiveness of IDEA and its high
performance by deploying a prototype on Planet-Lab.

2. Design

We assume that IDEA works with a general

distributed file system that handles the ordinary read
and write operations. As shown in Figure 1, IDEA is
deployed in the middleware level. Applications on
different nodes consult IDEA when they access files.
Upon initiating an application, a user may choose to
give a hint on his or her acceptable consistency level.
The desired consistency level L1 for an object will be
set according to the hint or to a default value. (Note:
throughout the paper, the terms object and file are used
interchangeably.)

2.1. A Two-Layer Infrastructure

We build IDEA on top of a two-layer infrastructure.
This infrastructure is first introduced by the authors in
[6, 7]. It constructs a two-layer overlay for each object
of the system, where the top layer includes those nodes
that frequently update this object and the bottom layer
consists of the remaining nodes.
 Two reasons motivate us to adopt this two-layer
architecture. First, it is very unlikely that participants
in a large application are all interested in modifying the
same object at the same time. Thus it is expected that
all active writers form a much smaller subset of the
whole participant group. Second, the small size of the
top layer implies that it is much faster to detect and
resolve inconsistencies among members of the top
layer than that of the whole group.

Figure 1: IDEA: a middleware service

2.2. Protocol

 An outline of the IDEA protocol is depicted in
Figure 2. It is triggered by two operations: write and
certain read operations. Because the write operation,
such as issuing an update to a white board, will cause
inconsistency among replicas, it triggers the IDEA
protocol. For read operations, the IDEA protocol is
triggered when a user tries to retrieve a new file, such
as a new snapshot of a white board, because in this
case the system needs to make sure that the file
retrieved is sufficiently consistent for the user. For
other reads whether or not the protocol is triggered
depends on the context: if the file is frequently updated
locally, the reads will not trigger the IDEA protocol;
otherwise they will.

After the protocol is triggered, it uses a detection
mechanism to identify the inconsistency and then a
customized mechanism to quantify the consistency
level for a particular user. After the consistency level is
calculated, IDEA checks whether it is acceptable, i.e.,
above the level desired for the user. If acceptable,
IDEA returns the file to the user; otherwise, IDEA
resolves the inconsistency.

To achieve good responsiveness, IDEA first
calculates the consistency level only among the top-
layer nodes. This value may not be accurate because,
albeit rather infrequently, the bottom layer nodes can
also introduce inconsistencies. Hence, we deploy a
rollback mechanism to solve this problem. After the
file is returned from IDEA, users could proceed with
their work. However, in the background IDEA
continues to detect inconsistency in the bottom layer
and calculates a new consistency level for the file. If
the new value is sufficiently close to that obtained from
the top layer, no action is needed; otherwise, IDEA
alerts the user about the discrepancy and, upon the
user’s request, resolves the inconsistency and rolls
back the user’s operations.

Figure 2: The IDEA protocol

2.3. Inconsistency Detection

To provide consistency guarantees, the
inconsistency detection is the first component of
IDEA. We have proposed in [6, 7] an efficient, low-
cost inconsistency detection mechanism. IDEA adopts
that for detecting inconsistencies.
 The conflicts of two or more updates, i.e., the
inconsistencies among different replicas, are detected
through exchanges of version vectors [11]. A version
vector tracks the number of times a file is updated by
certain users. For example, version vector (A:3 B:5)
means that user A has modified the file three times and
user B has modified it five times. So the replica
represented by this version vector is considered more
obsolete than that presented by version vector (A:4
B:7). Two replicas are inconsistent if their version
vectors are different. By exchanging version vectors in
the two-layer infrastructure [6, 7], most inconsistencies
are detected in the top layer. Our previous research [8]
has shown that 95% of inconsistencies are quickly
detected in the top layer.

2.4. Consistency Level Quantifications

 This section describes how IDEA quantifies the
object consistency level for a user. We first extend the
object version vector and then borrow the <numerical
error, order error, staleness> metric from the TACT
continuous consistency model [16] to quantify the
consistency.
 The current version vector [11] only tells the
number of updates from individual writers. It is not
sufficient for our purpose. Thus we design an extended
version vector. As illustrated in Figure 3, the extended
version vector includes several new items.
 First, the extended version vector has timestamps
associated with each update. For example, <A:2(1, 2)>
means that the two updates from user A happen at time
points 1 and 2. We assume that the differences among
clocks of participating nodes are within seconds. This
can be achieved by running a clock synchronization
algorithm such as the one proposed in [5], or by letting
all participating nodes use NTP (Network Time
Protocol) [10] to synchronize with a time sever. This
way the timestamps of different nodes become
comparable.
 Second, we use a numerical value in square
brackets, for instance <… [5] …>, to represent some
critical metadata for the application. It is used to

characterize the value difference of different replicas.
For examples, in the case of a distributed white board,
the metadata could be the sum of the ASCII values of
the few recent local updates; while in an airline ticket
booking system, the metadata could be the total sale
price. The differences in these metadata indicate the
effect of the conflicts.
 Third, the <numerical error, order error, staleness>
triple is attached at the end of the extended version
vector. The numerical error is derived by comparing
the metadata values; the order error counts the
difference between numbers of updates and the
staleness is calculated from the timestamps.
 Because IDEA adopts this extended version vector,
for brevity we will simply use the term “version
vector” to refer to the “extended version vector” in the
remaining of the paper.
 We now illustrate how to quantify the consistency
level. Assume that an object has two active writers (A
and B) and two associated replicas (a and b). And after
several updates, a and b’s version vectors are
<A:2(1,2) B:0 [5] 0 0 0 > and <A:0 B:1(3) [2] 0 0 0 >
respectively.
 IDEA first derives a reference consistent state. It is
a state that is considered as the basis for the
consistency level evaluation. In Section 2.5 we will
show that there are multiple ways to derive the
reference consistent state. For now, let us assume that
if two replicas are in conflict with each other, the
replica with higher ID value becomes the reference.
Thus, for the above example b is considered in the
reference consistent state and is used to calculate the
consistency levels for replicas a and b.
 To quantify the consistency levels, the <numerical
error, order error, staleness> triples are first
computed, where the numerical error is derived from
the metadata values; the order error counts the
difference between numbers of updates and the
staleness is defined as the time difference between the
most recent update in the reference consistent state and
the last time when the replica is consistent with the
reference. For replica a, since its metadata differs in 3
units from that of b (the reference state), its numerical
error is 3; replica a misses one and has two extra
updates, so its order error is 3; finally, the last time
when a is consistent with b is at time point 1, the most
recent update at b is at time point 3, and their
difference is 2, so the staleness of replica a is 2. After
the calculation, a’s version vector becomes <A:2(1,2)
B:0 [5] 3 3 2 >. The version vector remains <A:0
B:1(3) [2] 0 0 0 > for replica b because b is in the
reference consistent state.
 IDEA quantifies the consistency levels using the
maximum values and customized weights of the
<numerical error, order error, staleness> triple. For
example, if the order error is always less than 10, then

Figure 3: Extended version vector

the maximum value of the order error (max_order) can
be set to 10. The weights (num_weight, order_weight,
and stale_weight) on numerical error, order error, and
staleness are customized for individual user of the
object and they can be adapted according to the user’s
changing needs (Section 2.8). For example, if a user
weighs the three types of errors equally, num_weight,
order_weight, and stale_weight will all be 33.3%. For
a user, the consistency level of a replica is quantified
by the following equation:

weightstale
staleness

stalenessstaleness

weightorder
order

errororderorder

weightnum
num

errornumnum
yConsisntec

_
max_

max_

_
max_

max

_
max_

max

×−+

×−+

×
−

=

… (1)

2.5. Inconsistency Resolution Policies

 After detecting inconsistencies and quantifying the
consistency level, IDEA checks whether or not the
consistency is above the user’s desired level. If not,
IDEA invokes the inconsistency resolution module to
provide the user with the consistency guarantee.
 Given two replicas, if their version vectors u and v
are different, they are inconsistent. In the presence of
inconsistencies, IDEA will derive a reference
consistent state for the object. There are multiple ways
to derive the reference consistent state. Which method

to apply is determined by the inconsistency resolution
policy. Several typical policies are presented in this
section.
 Two version vectors are comparable if and only if u
< v, u = v, or u > v. When comparable, it is
straightforward  we should always use the latest
replica, i.e., the replica with the bigger version vector.
That replica therefore defines the reference consistent
state. The decision becomes difficult when the version
vectors are incomparable. For example, <A:2(1,2) B:0
[5] 0 0 0 > is not comparable with <A:0 B:1(3) [2] 0 0
0 > because the first item, the number of updates by A,
of the first vector is bigger but its second item, the
number of updates by B is smaller. In this case, the
best choice of the reference consistent state is not
obvious. To solve this problem, three different policies
are listed and their applications are discussed as
follows.

• Invalidate Both. Following this inconsistency

resolution policy, both of the conflicting
versions are considered invalid and they will be
rolled back to a previous consistent state. That
state is thus defined as the reference consistent
state. For example, in a distributed white board
system, two simultaneous updates at the same
spot can be both cleared to prevent ambiguity
and to ensure fairness (i.e., no one is more
important than the other).

• ID-Based. In this policy, each node is assigned
a random ID, like a hash value of their IP
address via MD5 (a commonly used hash
function in Peer-to-Peer systems). When
detecting a conflict of version vectors, the
system chooses the node with a larger ID and
considers its replica to be in the reference
consistent state. This approach can be used in
both a distributed white board system and an
airline ticket booking system when users prefer
progresses to fairness. Unlike the invalidate
both policy where updates are rolled back, this
approach always proceeds with the discussion in
a white board system and sells more tickets in
an airline ticket booking system.

• Priority-Based. This policy assigns different
priorities to users. When a conflict arises, the
higher-priority user wins and his or her replica
is chosen as the reference. For instance, a
supervisor could have a higher priority than
employees of a company. Thus the supervisor’s
updates on a white board are always preserved.
In an airline ticket booking system, higher
priorities should be given to preferred customer
groups.

2.6. Background & Active Resolutions

IDEA invokes the consistency resolution in two
ways, referred to as background and active resolutions.

To improve the consistency level, the background
resolution resolves inconsistencies periodically. It
invokes resolution without the user’s intervention.

Unlike the background resolution, the active
inconsistency resolution is triggered by a user or by
IDEA when the consistency level is not acceptable.
Upon the resolution request, the nearest replica acts as
the initiator and starts a two-phase protocol. The
initiator first sends a request to all top layer nodes to
call for attention to the upcoming resolution process. If
no one else is initiating the same process, the initiator
will get positive acknowledgements from all top layer
nodes, and start the resolution procedure. However, if
someone else has sent out the same request, this
initiator will back-off and retry after a random period.
Here back-off is used to avoid redundant resolutions
and to save bandwidth. During the back-off period, if
the initiator receives a notice that the requested
resolution has been started by someone else, this
initiator will simply cancel the retry process.

Once the resolution is started, the procedure is the
same for the background and active approaches. IDEA
sequentially visits all top layer nodes and collects the
replica version vectors. By following a resolution
policy presented in Section 2.5, IDEA derives the
reference consistency state and determines updates that
are needed for building the consistent replica. It then
sends the information to top layer nodes and other
involved members to let them construct or retrieve the
consistent replica.

2.7. Control the Adaptation

Broadly speaking, IDEA provides three
mechanisms for controlling the adaptation that cater to
different application semantics.

• Hint-Based. Following this scheme, users could

specify the consistency levels that might satisfy
their needs in advance. IDEA then guarantees
their perceived consistencies are always above
the desired levels.

• On-Demand. This scheme provides users with a
way to dynamically adjust the consistency when
they are not satisfied or when their needs
change. This way, although users may not be
good at expressing their desired levels in
quantitative terms (i.e., hints), they could still
determine on the fly whether or not the
guaranteed consistency is adequate and control
the system accordingly.

• Fully Automatic. IDEA also provides a
mechanism to balance between the consistency
and the overhead, where best-effort
consistencies are maintained without violating
the system overhead constraints. In this scheme,
IDEA applies background resolution, whose
invocation frequency is determined by the
allowed overhead. A potential application of this
scheme is the airline ticket booking system. For
example, if the consistency overhead is deemed
not to exceed 20% of the system capacity so that
enough resources will be used to process
customer requests, then the frequency of IDEA
background resolution should be adjusted
accordingly.

2.8. User Interface

We provide users with an interface to control how

IDEA adjusts the consistency levels for their objects.
Before starting the application, users could give hints
on their required consistency. As explained in Section
2.4, IDEA quantifies the consistency level using the
values and customized weights of the <numerical
error, order error, staleness> triple. Since different
users may weigh the three types of errors differently
for different applications, the interface allows users to
customize the weights (num_weight, order_weight, and
stale_weight) as well as the desired consistency level.

However, users may not know how to quantify their
desired levels and weights beforehand. Moreover their
needs could change dynamically. Therefore, IDEA also
provides users with an interface to adjust their
preferences on demand. Via the interface, users could
communicate with IDEA and provide feedback on their
satisfaction with the consistency and the system
responsiveness. If a user prefers better responsiveness
to consistency, IDEA will lower his or her desired
consistency level and thus improve the system
responsiveness. If it is the consistency that is not
acceptable, a user could control the guaranteed
consistency level by adjusting the weights or boosting
the desired level.

Take the distributed white board system as an
example. In the system, numerical error denotes the
metadata difference of replicas; order error measures
the update sequence error; and staleness reflects the
replica’s up-to-dateness. Among them, the order error
is a common and the most confusing error because
white board writes make sense only if they are placed
in order. Thus, if white board users prefer order
preservation to reduced staleness, IDEA could give
more weight to the order error such as assigning 70%
to order_weight and 10% to stale_weight.

3. Evaluation

Three metrics—consistency level, delay, and
communication overhead—are used to evaluate the
adaptability and performance of IDEA.

3.1. Adaptive Guarantees

We emulate a distributed white board application to
show the effectiveness of IDEA in achieving the
consistency guarantee and adaptability. In this
application, a participant uses the IDEA interface to
indicate a desired consistency level. We assume when
consistency is above the specified level, the user is
satisfied. Thus, IDEA should provide the quantified
consistency level guarantee. In addition, when needs
change and the user is no longer satisfied with the
guaranteed consistency level, he or she should be able
to control IDEA and adjust the consistency.

We run the experiments on forty Planet-Lab [12]
nodes, among which four of them are concurrent
writers of a given file. After the system warms up, the
four nodes become the top layer of the file. To carry
out experiments in an Internet scale, the forty nodes are
chosen from all over US and Canada. In addition, the
concurrent writers are carefully chosen to be far apart
from each other.

In this group of experiments, each of the four
writers issues an update every 5 seconds. Thus during a
100-second experiment period, there are totally 20
updates per writer. For the first two experiments, the
desired consistency levels are set at 95% and 85%
respectively. Therefore, IDEA begins to resolve
inconsistencies when the consistency level is below
95% or 85%. In Figures 4(a) and 4(b), we show the
experiment results, where the “view from the user”
curve presents the consistency perceived by the first
writer who triggers the IDEA active inconsistency
resolution and the “system average” curve is the
average consistency level of all writers. As
demonstrated by the curves, the consistency levels
improve right after IDEA invokes the active resolution.
After the resolution, the consistency is guaranteed to be
above the desired level (95% or 85%).

In both scenarios, IDEA is able to resolve
inconsistencies fairly quickly. Since we only sample
the system once every five seconds, all we can tell
from the two figures is that the consistency is brought
back in less than five seconds. As measured in Section
3.2, it actually takes only 315ms to actively resolve the
inconsistencies.

In the third experiment, we evaluate IDEA for its
consistency adaptability. The experiment runs for 200
seconds, where initially the desired consistency level is
set at 95% and after 100 seconds it is changed to 90%.
From Figure 5, we can see that once the consistency

falls below the current desired level, IDEA resolves
inconsistencies to provide the consistency guarantee.
Clearly the adaptation of the guaranteed consistency
level is achieved.

3.2. Responsiveness

This section uses the distributed white board
application to evaluate the delay of inconsistency
resolution, i.e., the responsiveness of IDEA. Assume
that a user adapts the desired consistency level on-
demand and triggers the active resolution because he or
she is not satisfied with the current consistency level.
In this scenario, it is important that IDEA quickly
resolves inconsistencies and guarantees the user the
desired consistency level.

To measure the average delay, we run the active
inconsistency resolution four times and each time we
pick a different writer to initiate the request. The final
result reflects the average resolution delay of the four
runs. Table 1 shows the average delay per active
inconsistency resolution. It breaks down into two
phases: the call-for-attention as phase one and the
actual resolution as phase two (Section 2.6). As
confirmed by the data, phase one is executed much
faster than phase two. There are two reasons. First, the
operation in phase one is only a call-for-attention, thus
it causes little computation overhead, compared to the
actual resolution process in phase two, which involves
collecting and analyzing the information of replicas,
deriving a consistent state and constructing a consistent
replica. Second, the call-for-attentions to different
nodes are executed in parallel, which further improves
its efficiency; while for the second phase, our current
implementation involves sequential visits of all top
layer members.

Based on the data collected, we extrapolate the
performance of IDEA in a more dynamic environment
where there are more simultaneous writers. This is
used to analyze the scalability of the IDEA
inconsistency resolution. Because phase one is
executed in parallel, its performance does not change
significantly with the top layer size. On the other hand,
since phase two operations are executed sequentially,
its delay is estimated to increase linearly with the top
layer size. The results shown in Table 1 are based on a
top-layer of four nodes, where, when resolving
inconsistencies, one node initiates the operation and
the other three nodes are contacted sequentially. Thus,
on average it takes about 104.747 (i.e., 314.141 / 3) ms
to process one top layer node. Consequently, the
response time of active resolution for an n-node top
layer is extrapolated as follows:

Figure 4(a): Resolution guarantees
consistency level ≥ 95%

Figure 4(b): Resolution guarantees
consistency level ≥ 85%

Figure 5: Adaptive guarantees

 Average delay in one round of active
resolution

Phase1 0.46825 ms
Phase2 314.241 ms

Table 1: Delay of active resolution

Delay = 0.46825 + 104.747 * (n-1) … (2)

Besides the active resolution, we have also

introduced the background resolution in Section 4.6.
One round of background resolution essentially
consumes the same amount of time as the phase two of
the active resolution. Thus its delay is approximated by
the following equation:

Delay = 104.747 * (n-1) … (3)

We can clearly see that even with ten simultaneous

writers, which is highly unlikely in practice, the cost of
active or background resolution is still below one
second. We believe that this is a reasonably good
performance because in a large-scale distributed
system it is not uncommon that a message is delayed
for seconds or more [3], thus offsetting the impact of
the delay caused by IDEA. Nonetheless, if
performance is a concern, to further improve the
responsiveness of IDEA, a parallel resolution
mechanism can be easily implemented and deployed
(i.e., to let the initiator contact all top layer nodes in
parallel).

3.3. Communication Overhead

 To study the communication overhead, we emulate
on IDEA an airline ticket booking system, which
mainly applies the background inconsistency
resolution. Due to page limit, the detailed
experimentation is omitted, but the main result is that
IDEA incurs minimal communication overhead. The
details of this experiment and how users can set the
resolution frequency so as to satisfy the system
overhead constraint can be found in [9].

4. Conclusion

In this paper, we made two contributions. First, we
point out the importance of adaptive consistency
guarantees and design IDEA to provide this service.
Second, we implement and deploy an IDEA prototype
on the Planet-Lab to show its adaptability.

References
[1] P. Bober and M. Carey, Multiversion Query Locking, in

Proc. of 18th Conference on Very Large Databases, San
Francisco, CA, USA, 1992. pp. 497-510.

[2] T. Chang, G. Popsecu, and C. Codella, Scalable and
Efficient Update Dissemination for Interactive
Distributed Applications, in Proc. of ICDCS 2002,
Viena, Austria, July, 2002.

[3] D. Dullmann, W. Hoschek, J. Jaen-Martinez, B. Segal,
A. Samar, H. Stockinger, and K. Stockinger, Models for
Replica Synchronization and Consistency in Data Grid,
In Proc. of 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC), Aug. 7-9,
pp. 67-75, 2001

[4] J. Kistler and M. Satyanarayanan, Disconnected
Operation in the Coda File System, ACM Transaction
on Computer Systems, 10(1) pp. 3-25, Feb. 1992.

[5] C. Liao, M. Martonosi, and D. W. Clark, “Experience
with an adaptive globally-synchronizing clock
algorithm,” in Proc. of ACM Symposium on Parallel
Algorithms and Architectures, Saint Malo, France,
1999, pp. 106-114.

[6] Y. Lu and H. Jiang, A Framework for Efficient
Inconsistency Detection in a Grid and Internet-Scale
Distributed Environment, In Proc. of HPDC-14.
Research Triangle Park, NC, pp. 318-319.

[7] Y. Lu, H. Jiang, and D. Feng, An Efficient, Low-Cost
Inconsistency Detection Framework for Data and
Service Sharing in an Internet-Scale System. In Proc. of
IEEE ICEBE 2005, pp. 373-380.

[8] Y. Lu, X. Li, and H. Jiang, Accurate Performance
Modeling and Guidance to the Adoption of an
Inconsistency Detection Framework, 2008 IEEE
International Conference on Networking, Architecture
and Storage (NAS 2008), Chongqing, China, June 2008.

[9] Y. Lu, Y. Lu, and H. Jiang, IDEA: An Infrastructure for
Detection-based Adaptive Consistency Control in
Replicated Services, Technical Report TR-UNL-CSE-
2007-0001, University of Nebraska-Lincoln, Jan. 2007.

[10] D. L. Mills, A brief history of NTP time: memoirs of an
Internet timekeeper, ACM SIGCOMM Computer
Communication Review, 33 (2), April 2003. pp. 9-21.

[11] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B.
Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, and
C. Kline, Detection of mutual inconsistency in
distributed systems. In IEEE Transactions on Software
Engineering, 9(3), pp. 240-247, 1983

[12] L. Perterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet, In Proc. of ACM HotNets-1 workshop.

[13] M. Stonebraker, Concurrency Control and Consistency
of Multiple copies of Data in Distributed INGRES,
IEEE Trans. on Software Engineering, 5(3), May 1979

[14] D. B. Terry, M. M. Theimer, K,. Petersen, A. J. Demers,
M. J, Spreitezer, and C. H. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System, In Proc. of the 15th ACM SOSP, 1995

[15] Y. Yang and D. Li, Separating Data and Control:
Support for Adaptable Consistency Protocols in
Collaborative Systems, ACM CSCW 2004, Chicago,
Illinois, Nov. 2004, pp. 11-20.

[16] H. Yu and A. Vahdat, Design and Evaluation of a
Continuous Consistency Model for Replicated Services,
In Proc. of OSDI 2000.

