
Evaluation I: Probability that the top
layer fails.

 - Workload used in anlysis: each node changes its
interested file with rate r.
 - One rule: when a user becomes interested in a file,
it reportes this interest one epoch (a term from RanSub,
basically, it is a round of information
collection/distribution) ahead.

 - For two writers, A and B, the top layer fails in the
following two cases:
 (1) One of them is not in the temperature overlay.
 (2) Both of them are not in the temperature overlay.
 - Probability of failure under a typical configuration
are:
 (1) 18.9%; (2) 0.04%

 - Conclusions:
 (1) The probability of failure is generally small.
 (2) The probability of failure is very close to 0 if the
target file becomes hot and attract many simutaneous
writers.

Why inconsistency avoidance is not
suitable for an Internet-scale
environment?

 - Protocols considered: strong consistency protocols
and optimistic protocols.

 - For strong consistency control protocols:
 (1) It can be very costly to maintain because of the
memebership maintenance and strict protocol
enforcement cost.
 (2) Frequent packet loss in such a large scale network
makes it difficult, if not impossible, to maintain a perfect
protocol.

 - For optimistic consistency control protocols:
 (1) They relieve the costly maintenance and strict
enforcement cost associated with strong consistency
protocols.
 (2) But, they are still predefined. It can be either
overkill or insufficient in an environment where many
applications are deployed.

Advantages of an efficient
inconsistency detection framework

 - It removes the costly membership management
requirement that is used to enforce a consistency control
protocol in the first place.

 - By ensuring that the potential inconsistent bahavior
be detected in a timely manner, it can control the
inconsistency degrees.

 - After an inconsistency is detected, the system can
respond based on the applications’ semantics.

 - Basic idea: build an overlay on top of the underlying
network based on nodes’ updating history.

 - The top layer is based on nodes’ updating history,
or updating temperature and is called “temperature
overlay”.

 - The bottom layer is a backup and uses gossip-
based inconsistency detection.

 - The bottom layer is only triggered when the top
layer fails to detect the inconsistencies.

Evaluation II: Maintenance cost

 - We run the two-layer inconsistency detection module
for 800 seconds. By the end of the simulation, we
collect the number of messages received by each
node and the result is listed below.

Discussion

 - Application background
 - Is timely detection good enough? If not, what are other
related research issues?

Future work

 - Bound the detection delay
 - Explore possible inconsistency resolution schemes

References

[1] P.T. Eugster, R. Grerraoui, S.B. Handurukande, et. al. Lightweight
Probabilistic Broadcast, DSN 2001
[2] D. Dullmann, W. Hoschek, J. Jaen-Martinez, et. al. Models for Replica
Synchronization and Consistency in Data Grid, HPDC 2001.
[3] D. Kostic, A. Rodriguez, J. Albrecht, et. al. Using Random Subset to Build
Scalable Network Services, 4th USENIX Symposiou on Internet Technologies
and Systems (2003)

 - Multiple applications share data and service
through the support of an Internet-scale middleware.

 - The inconsistencies among nodes are detected
by the detector.

 - Upon detection, the detector consults with the
inconsistency level monitor (step 1 and step 2)
before reaction is initiated.

 - Based on the applications’ semantics, if the
inconsistency is tolerable, the detector does not
react.

 - Otherwise, the detector informs the inconsistency
resolution module to resolve the inconsistency (step
3).

Inconsistency avoidance vs.
Inconsistency detection

 - Inconsistnecy avoidance predefines consistency
control protocols and enforces the system to obey
the protocols.

 - Inconsistency detection detects inconsistency in
a timely manner when it occurs instead of avoiding
it in the first place.

A Framework for Efficient Inconsistency Detection in a Grid and Internet-Scale
Distributed Environment

Yijun Lu and Hong Jiang
Department of Computer Science and Engineering, University of Nebraska-Lincoln

{yijlu, jiang}@cse.unl.edu

A Framework for Efficient Inconsistency Detection

(1) Framework overview

(2) Timely inconsistency detection

(3) Design issues of the two-layer
inconsistency detection module

 - Meauring the updating patterns (by tracking updating
frequency for a certain file)

 - Learning the updating patterns by RanSub protocol.

 - Interest-group based temperature collection/distribution to
save network bandwidth

 - Caching (for both temperature and routing information) to
imporve the efficiency; garbage collection to remove stale
states.

(4) Inconsistency resolution

 - Determine whether to resolve the inconsistency based on
applications’ semantics.

 - Two ways for the system to learn applications’ semantics.
 (a) Users specify their preferences.
 (b) System passively monitor the users bahavior.

 - Two ways to actually resolve the inconsistency
 (a) Middleware resolve it automatically.
 (b) Flag “inconsistency” and ask for human intervention.

 - Conclusion:
 While the Max looks high, it is accumulated over
800 seconds. Even if the size of a message is 1KB,
the network bandwidth cost is still only 6KB/s for the
root (for RanSub tree), which bears the Max number.
 Thus the maintenance cost will not overwhelm the
root.

