
An Efficient, Low-Cost Inconsistency Detection Framework for Data and
Service Sharing in an Internet-Scale System

Yijun Lu and Hong Jiang
Dept. of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115, USA

{yijlu, jiang}@cse.unl.edu

Dan Feng
Dept. of Computer Science and Engineering
Huazhong Univ. of Science and Technology

Wuhan,Hubei 430074, China
dfeng@hust.edu.cn

Abstract

In this paper, we argue that a broad range of

Internet-scale distributed applications can benefit from
an underlying low-cost consistency detection
framework that is an alternative to inconsistency
avoidance and can detect inconsistency among nodes
sharing data or services in a timely manner.

This paper first presents an overview of the
inconsistency detection framework. Then, it discusses
the detailed design of the two-layer inconsistency
detection module, the core component of this
framework, which can detect inconsistency among
nodes in a timely manner. The proposed two-layer
inconsistency detection module is evaluated both
analytically and via simulations, which shows that this
module can significantly reduce the time to detect
inconsistency among nodes without adding much
maintenance cost. Finally, this paper outlines the
possible mechanisms to discern the application
semantics and to resolve the detected inconsistencies.

1. Introduction

Replicating data and services is an attractive
strategy to increase availability and performance in
distributed systems. In these systems, the importance
of consistency control is well understood. In this paper,
we are particularly interested in the consistency control
problem in Internet-scale distributed systems in which
the nodes span across the Internet. This includes a
broad range of applications such as Grid, online
collaboration, content distribution network, and large-
scale e-business applications.

Conventionally, consistency control is designed to
avoid the inconsistency up-front. Well-defined
consistency protocols, such as strong consistency
protocols [11] or optimistic consistency protocols that

increase the availability while tolerate relaxed
inconsistency among nodes [6, 12], are predefined and
deployed before the system starts to run. In this paper,
we refer to this scheme as inconsistency avoidance.

While inconsistency avoidance can be effective in a
small-scale networked system, such as a small cluster,
it has some drawbacks in an Internet-scale
environment, such as Grid or large-scale distributed e-
business applications.

More specifically, a strong consistency protocol can
be very costly to maintain due to the membership
maintenance and strict protocol enforcement cost. And
because of the relatively unreliable network
transmission in large-scale networks, it is impossible in
most cases to maintain strong consistency [4].

While optimistic consistency protocol relieves the
costly maintenance and strict enforcement burden
associated with strong consistency protocols, it also
does not suit the large-scale distributed system because
it is predefined. In an environment where many
applications are deployed, providing a predefined
consistency protocol can be either overkill when an
application does not need that strong consistency, or
insufficient when an application needs stronger ones.
While several consistency protocols can be deployed to
cater different applications simultaneously, it would
inevitably increase the complexity of the system
design.

Besides, some application’s requirement for
consistency changes from time to time. In online
conference, for example, users require higher
consistency when an important speech is going on
while are willing to tolerate lower consistency for
better performance otherwise [3]. In this scenario, a
predefined protocol is incapable of capturing that
semantic.

This paper proposes a framework to detect
inconsistency in a timely manner when it occurs

instead of avoiding it in the first place. We refer this as
inconsistency detection.

Comparing to inconsistency avoidance, several
advantages can be obtained from an inconsistency
detection framework. First, it removes the costly
membership management requirement that is used to
enforce a consistency in the first place. Instead, it
detects the inconsistency when it happens. That makes
the system scalable. Besides, by ensuring that the
potential inconsistent behavior be detected in a timely
manner, a system can combine the results (if the results
are combinable), break the tie or alert the users so that
they can resolve the conflict as soon as possible using
appropriate resolution protocols. This can at least
prevent the conflicts from further damaging the
system.

This mechanism can also support applications with
high consistency requirement because, as long as this
framework can detect the inconsistency, it can resolve
it. In other words, application will not suffer
inconsistency level when used this inconsistency
detection mechanism.

Second, after the inconsistency is detected, the
middleware can respond based on the application
semantics. That is, it resolves the inconsistency when it
is needed, while letting the detected inconsistency
continue to exist when it is tolerable or even preferred.
For the latter case, consider the air ticket booking
system, an example for e-business, which requires a
consistency control protocol allowing inconsistency –
overselling – to exist within a certain threshold to
cover the returned tickets.

In this aspect, this mechanism provides versatility
as it can support several applications with different
consistency requirements without deploying separate
consistency protocols. Besides, it simplifies the
system’s design.

This paper presents an overview of an inconsistency
detection framework, i.e. its main structure and main
components. Then it presents the design of the
inconsistency detection module – the core component
in the framework, which detects inconsistency in a
timely manner, as wells its evaluation. The
mechanisms to discern the application semantics and to
resolve the inconsistencies are outlined subsequently.
The rest of the paper is organized as follows. Section 2
discusses the overview of the inconsistency detection
framework. Section 3 presents the enabling
technologies of the proposed two-layer inconsistency
detection mechanism whose design is presented in
section 4. Section 5 evaluates the framework by both
analyses and simulations. A discussion about
inconsistency resolution is discussed in Section 6.
Related work is presented in section 7. Finally, section
8 concludes this paper and discusses future work.

Figure1. Architecture of the Inconsistency
Detection Framework

2. Overview of the Inconsistency Detection
Framework

As an alternative to inconsistency avoidance, the
inconsistency detection framework detects
inconsistency among nodes in a timely manner. A
logical diagram of this framework is shown in Figure
1.
 In this framework, multiple applications share data
and services through the support of the Internet-scale
middleware and the inconsistencies among them are
detected by the detector. Upon detection, the detector
consults with the inconsistency level monitor (step 1
and step 2) before reaction is initiated. Based on the
applications’ semantics, if the inconsistency is
tolerable, the detector does not react; otherwise, the
detector informs the inconsistency resolution model to
resolve this inconsistency (step 3).
 The arrows from the middleware to the detector
module means that the detector gets information from
the middleware, and the arrow from the inconsistency
resolution module to the middleware means that the
module can influence the middleware. The two arrows
between the consistency level module and the
middleware means that it can get the consistency levels
for applications from the middleware and, it can
potentially help the applications to adjust their
consistency levels.

As we can see, the core module of this framework is
the timely inconsistency detection mechanism, which
will be discussed in the next section.

3. Timely Inconsistency Detection: Basic
Idea and Enabling Technologies

The basic idea is to build an overlay on top of the

underlying network based on nodes’ updating history.
As the top layer is based on nodes’ updating history, or
updating temperature, it is referred as “temperature

overlay”. The bottom layer of gossip-based
inconsistency detection is used as a backup and only
triggered when the top layer does not find any
inconsistency. The architecture of the framework is
illustrated in Figure 2.

In the temperature overlay, each node tracks its own
updating history and exchanges this information with
others through the RanSub [7] protocol periodically.
When a node commits an update, this update is
propagated in the temperature overlay in such a way
that the nodes that update this file most frequently are
visited first. The rationale behind this design is that a
user usually works on a file for a certain period of
time. For example, he/she may edit a report for 10
minutes, then debugs, thus updates, a C++ file for 20
minutes.

The hypothesis of this design is that, through this
two-layer framework, most inconsistencies can be
detected in the top layer quickly, probabilistically
speaking. The two enabling technologies and their
roles in timely inconsistency detection are discussed
below.

3.1. RanSub

RanSub [7] is proposed to address the challenge of
locating disjoint content within a system. RanSub
distributes random subsets of nodes’ information
through a tree by executing the collect and distribute
processes. The collect process starts from the leaves
and goes all the way up to the root. In this process,
each node informs its parent about the information it
has about its sub-tree by constructing a representative
subset of all the nodes in it and then delivers the
information all the way up to the root. The distribute
process then starts from the root and delivers the
information from a subset of nodes to each of its child.
The child then distributes a subset information
determined based on its own information and the
subset information received from its parent to pick a
subset of nodes and distribute the information further
down the tree. Using the collect and distribute
processes, RanSub delivers information from a random
subset of nodes to each node per epoch.

A key operation in RanSub is the compact
operation. In the collect process, compact constructs a
fixed size subset to randomly and uniformly represent
its sub-tree members. In the distribute process,
compact constructs a fixed size subset to randomly and
uniformly represent the global information for each of
the current node’s children. There are several flavors of
the compact operation, and we choose the RanSub-all-
non-identical option to deliver the update information.
It distributes a random subset of nodes among the

Figure2. Architecture of the two-layer
Inconsistency Detection Module

whole system, thus is suitable for the inconsistency
detection purpose.

While we use RanSub as an underlying protocol to
exchange nodes’ information among one another, we
advance RanSub by proposing an interest-group based
collect/distribute process.

3.2. Gossip-based Data Dissemination

To alleviate the scalability bottleneck of
information dissemination, gossip based data
dissemination has been proposed. The Lightweight
Probabilistic Broadcast (lpbcast) [5] scheme advances
the gossip-based scheme by eliminating the
requirement of global view of the nodes. Instead, a
node maintains a fixed size of a random subset of this
system. Then a node disseminates non-duplicate
packets to a randomly chosen subset of neighbors in its
local view every T seconds. To minimize bandwidth
cost, each message only travels a certain hops.

In the context of the two-layer inconsistency
detection module presented in the next section, the
bottom layer uses this gossip-based dissemination to
distribute updates it receives to other members
periodically.

4. Design of a Two-layer Inconsistency
Detection Module

4.1. Measure the Updating Patterns

 An important operation in the framework is to
measure the updating patterns of nodes. Basically, we
let each node track the number of its updates
operations with regard to a particular file in a certain
period of time (in the current study, we use 30 seconds
as the default). Straightforwardly, the higher the
number of updates on a file is, the higher the updating
temperature of this file is. Because there could
potentially be many files in a node’s machine, there is
actually a temperature vector in each machine, with
each file having an entry in this vector.

While this scheme works, it is obviously not
scalable or network bandwidth efficient. For example,
a node may have 10,000 files in its machine but only
modifies less than 10 files in a certain period of time.
In this case, there is really no point of keeping a vector
in which 99.9% entries are 0 (no updates in the past).
To solve this problem, we introduce the notion of
interest–group based temperature collection and
distribution, which is described in Section 4.3. But
before we proceed to that optimization, we first discuss
the mechanism by which the nodes learn updating
temperatures from each other, thus laying the
background for future discussions.

4.2. Learning the Updating Patterns

Assume that each node is tracking its own updating
patterns and has prepared its temperature vector. Then
the temperature information is propagated via RanSub.
Recall that RanSub assumes the existence of a
multicast tree that covers all the nodes and use that to
collect and distribute the nodes’ information.

The only concern we have about RanSub is that it is
based on a single-tree structure and thus can not
tolerate even a single interior node failure. As
identified in its original paper, possible ways to work
around this include the use of multiple trees to
substitute the single-tree structure. This is an
interesting question and we are currently working on
deploying a multi-tree based multicast, such as
SplitStream [1], as the underlying communication
mechanism of RanSub. We expect such mechanism to
dramatically increase the resilience to node failures of
the detection framework.

4.3. Interest-Group Based Temperature
Collection / Distribution

One critical question about utilizing RanSub to
propagate temperature information is how to minimize
the network bandwidth cost. Without optimization, a
huge amount of data (updating temperature
information in this case) could be sent across the
network, and that could put significant strain on the
network. In this section, we propose an interest-group
based temperature collection and distribution scheme
to minimize the network bandwidth cost.

More specifically, we let the nodes only report the
updating temperature of the files that they are
interested in the collect process and every interior node
tracks the interested files of its sub-tree. In the
distribute process, an interior node only accept and
forward the updating temperatures of files which are of
interest to the nodes within its sub-tree.

To discuss this mechanism and analyze the
bandwidth cost of it more formally, we define the
parameters as follows.

Assume that the total number of nodes in the system
is n and each node has ki number of files in total. Each
node is interested in pi files within a certain period of
time. Suppose that there are q exchanges involved in
propagating the temperature information. Then we
assume that each updating temperature entry has a size
of s.

Because RanSub collects information through a tree
structure, for the purpose of analysis, we assume that
an interior node maintains m neighbors on average. If
we assume a balanced tree, then the height of tree, h, is
the smallest number larger than logm(n).

Thus, the number of total messages exchanged
among the tree nodes in the collect process is:

N ≤ m + m2 + … + mh

Each node only submits ki×s bytes of data in the

collect process. In the distribute process, a fixed
number of nodes’ information is distributed. Suppose
the fixed number is b, then the message is of size
b×ki×s. Let ka denote the average number of interested
files. If the length of an epoch is L seconds, then the
total bandwidth cost is:

Total BW = (N×ka×s + N×b×ka×s) / L
 = (b+1) ×N×ka×s / L

There are N links in this RanSub tree, so on

average, the bandwidth cost is:

AvgBW = TotalBW / N
 = (b+1) ×ka×s / L

Given a network with parameters b of 100, ka of 5, s

of 10 and L of 30, the bandwidth cost is 183 bytes per
second, which is small enough that can be supported
by a dial-up connection.

To further reduce the bandwidth cost, we use a
threshold to control the reporting of updating
temperatures. If a node has a temperature less than a
threshold t for a file and an interior node has already
had at least k entries for this file, then the lowest
temperature information will be dropped.

4.4. Two-layer Inconsistency Detection

When a module is updating a file, it consults the
two-layer inconsistency detection module to detect any
possible conflicts as follows. First, the node checks its
local cache to carry out the top-layer detection, where

it chooses the node with the highest updating
temperature on the file being updated and forwards the
update to that node. If the receiving node has an update
which conflicts with the one it receives, it notifies the
sender directly. Otherwise, the receiving node chooses
another node in its local cache that has the highest
updating temperature on this file and relays the update
to it. In addition, the traveling path is attached with the
update to prevent the same update from traveling back
to a previously visited hop.

If there is no conflict, then the update will stop
eventually at a node that has no nodes in its local cache
and has not been visited before. At this point, the
bottom-layer inconsistency detection is triggered. The
update is then sent to the last hop’s friend list and its
friend sends it out to the friend’s friends again. To
control flooding, each update only travels up to a
predefined number of hops. This process is illustrated
in Figure 3.
 In Figure 3, the solid line represents the top layer
(updating-temperature based) and the dotted line
represents the bottom layer (gossip based). In the
figure, when node A commits an update, it first
traverses the top layer to check with B and C to detect
any inconsistency. If either of them conflicts with A’s
update, C (the last hop in the top layer) starts the
detection from the bottom layer. In this case, if E
happens to have conflict with A, then this
inconsistency will be detected in the bottom layer.

Version vectors [10] are used to detect conflicts
among updates. A version vector tracks the number of
times a file is updated by a certain user and uses that to
detect inconsistency. For example, version vector (A:3
B:5) is earlier in time than version vector (A:4 B:7).
Two version vectors u and v are comparable if and
only if u < v, u = v or u > v. If not, they conflict with
each other. For example, (A:5 B:3) conflicts with (A:3
B:6).

In the ideal case, if all the nodes never change their
interested files, then all the inconsistency can be
resolved in the top layer. However, this is not the case
in practice. The analysis about the case where the
nodes change their interested files with a rate r is
conducted in Section 5.1.

4.5. Caching and Garbage Collection

Two forms of caching are considered here. First, in
caching of the temperature information, when a node
receives the information about other nodes, it saves
that information into its local cache. When new
information arrives, it updates its local cache if the
information is already in the cache. Otherwise, the new
information is added to the cache.
 Garbage collection is used to keep the temperature

Figure3. Inconsistency Detection

Figure 4. Issues with update propagation path

history fresh. To check the freshness, each entry in the
local cache is assigned a time stamp, which basically
tracks when that entry was last updated. If an entry is
updated again, then the update time is reset to the new
time. All the entries in the local cache are sorted
according to its freshness. Periodically (the current
study uses a period of 3 minutes) the garbage
collection scans the list and removes all the entries that
are older than that period.

The second caching scheme is to help minimize the
update routing cost. Here, a node caches the
propagation path along which the update traverses
within the top layer to detect any inconsistency.

Figure 4 illustrates the process through an example.
In (a), the update from A is forwarded to C, then B. The
rationale is that the temperature of the updated file in C
is higher than that of B, thus there is a better chance to
resolve inconsistency by visiting C first than by
visiting B. However, there is a tradeoff between high
probability of resolving inconsistency and low routing
cost. Consider (b), A visits B first, then C without
sacrificing much routing delay. In general, (b) is a
better update propagation scheme than (a).

We use a simple heuristic scheme to deal with the
tradeoff. First, each node picks three nodes with the
highest temperatures on the file being updated and
compares their routing delays, based on information
cached locally. It then chooses the closest node and
forwards the update to it.

There are certainly other options available. For
example, more complicated schemes could be
developed to derive a formula and assign different
weights to the two parameters. However, to accurately
choose the right weights, extensive empirical studies
need to be conducted to investigate the issue and we
leave this to future work.

4.6. Discussion

In practice, there are several forms of updates, such
as creating, modifying, and deleting operations. We
believe that the proposed two-layer inconsistency
detection module can benefit all the cases by
minimizing the delay of inconsistency detection.

5. Evaluation

The two-layer inconsistency detection module is
evaluated by both probabilistic analysis and
simulation. In order to best evaluate the system
performance, we choose the Transit-Stub model [14] to
simulate a physical network. In the following
simulations, the Transit-Stub model generates 1452
routers that are arranged hierarchically, like the current
Internet structure. Then we generate 1,000 end nodes
and attach them to routers randomly with uniform
probabilities. Each end node was directly attached by
an LAN link to its assigned router.

In all the simulations, we run each simulation 5
times and calculate the mean value.

5.1. Probability that the Top-Layer Fails to
Detect an Inconsistent State

One of our goals is to determine the probability that
a conflict is missed by the top layer and thus the
bottom layer has to be triggered. Here, we assume that
each node changes their interested files with a rate of r,
which is defined as the ratio of the number of its newly
interested files with the total number of its interested
files in an epoch of RanSub. Thus r represents how fast
a node changes its interest. We further assume that all
the users have the same rate r and, given the collection
of the files, the new interest of users is uniformly
distributed across the whole collection.

One concern of this workload assumption is
whether it can capture the different popularity patterns
of the files, such as bursts. Here we argue that this
workload is able to capture these different patterns by
adjusting the total number of files in the system
because, in bursty accessing patterns, what we really
care is the worst case scenario, which is when its
popularity is the highest, in which case we can
decrease the total number of files in the collection to
make each file more popular (given a fixed number of
nodes, the smaller size the collection, the more popular
each file is).

If a node becomes interested in a file for the first
time, we let the node report its interest of new files one
epoch before its updating. In practice, this can be done

when a user first opens a file. This assumption is valid
as long as the open operation is at least an epoch ahead
of the real updating operation. We believe that this
assumption is reasonable.

Hence the worst-case scenario happens when a
node, A, just becomes interested in file f and then keeps
updating that file. In this case, the only chance that the
conflicts from A can be detected in the top layer is that
other updaters can somehow find the information about
this node in the top layer.

Suppose that there are n nodes in the system and
each node receives b other nodes’ information during
an epoch. Thus after an epoch, each node receives b
nodes’ information, and in total there are n×b pieces of
information exchanged across the system. Because this
information is uniformly distributed, node A’s newest
interest can be received by b other nodes on average.
However, because each receiver changes its interest at
rate r, only (1 – r) * 100% of the b nodes will be still
interested in this file after an epoch. So after the first
epoch, the number of nodes that are still interested in
and maintain a link to node A with regard to the file f
is:

Nnew=b×(1-r) (1)

Then we assume that there are Nexist nodes already

interested in this file in this system before node A
becomes interested in it and they have already formed
a top-layer overlay and are maintaining it.

Suppose another node B, different from A, commits
an update on file f. Here we assume that B is among
the Nexist nodes which are already in the top layer with
regard to file f. The case that B is not among the Nexist is
discussed later.

Then the only case where B cannot reach A is that
the Nnew nodes have no overlap with the Nexist nodes,
with a probability of:

Nexist

n
Nnewnp

 −= (2)

As with the analysis in Section 3.3, we still assume

a network of 1000 nodes with an exchange size b of
100. Suppose that the rate r is 0.2, hence Nnew = 80
from formula (1). If file f is a hot file with 20 nodes
interested in it, then Nexist= 20. Hence from formula (2),
the probability that the conflict on f cannot be resolved
in top layer is 18.9%.

Now we come back to the case where B is not in
Nexist. In this case, B is a new comer for file f as is for
A. In this case, the probability that the conflicts from B
and A cannot be resolved is conditioned on two events.

First, the Nnew from A and B cannot overlap. And,
second, either Nnew from A or Nnew from B is not
overlapped with Nexist. And this probability can be
represented as:

p
n
Nnewnp

Nnew

2*'

 −= (3)

Using the same set of parameters, we calculate p’ to

be 0.04%, which is much smaller than the earlier case
of 18.9%.

In summary, the probability that the top layer fails
to detect conflicts is quite low when the file is hot. This
result fits well with our design goal, which is to
minimize the delay of inconsistency detection. The
proposed scheme is especially effective when there are
a lot of spontaneous updates, an indication that a file is
becoming hot. In this case, as presented in formula (3),
the top layer can detect the inconsistency among them
with a probability very close to 1. For the two cases,
case two (thus formula 3) happens when a file becomes
hot suddenly and many users access it the first time,
while case one happens in other cases.

5.2. Maintenance Cost

The number of messages received by each node
during the maintenance process is used to evaluate the
maintenance cost of the temperature overlay.

We run the two-layer inconsistency detection
module for 800 seconds. Because the RanSub process
starts at the end of 30 seconds, there are 26 epochs
involved in total. At the end of the simulation, we
collect the number of messages received by each node
and the result is illustrated in Table 1.

Although the Max (which comes from the root of
the tree which RanSub uses) is much higher than the
mean value, it must be pointed out that it is
accumulated over 26 epochs. Thus within each epoch,
it receives 180 messages which equals to 6 messages
per second (one epoch runs every 30 seconds). Even if
the size of a message is 1KB, the network bandwidth
cost is only 6KB/s for the root. From that we can see
that the maintenance cost will not overwhelm the root.

This maintenance cost can be further reduced by
utilizing multiple tree based RanSub as follows. If
there are multiple trees, and they are configured with
different root, each epoch can then use a different root
to run the RanSub procedure, in which all the roots
share the maintenance cost.

6. Inconsistencies Resolution

Table 1. Maintenance cost

Max Mean Median
4680 51.9 26

 As discussed before, one important advantage of
timely inconsistency detection is the opportunity to
enforce different consistency levels according to the
application semantics. In this section, we outline the
mechanisms to capture the application semantics and
resolve the detected inconsistencies.

In practice, there are two ways to get information
about application semantics. First, the middleware can
ask the users to specify their preferences before they
use the system. For example, in an online conference,
the users can specify the most important speaker to
them. Thus, when inconsistency about this particular
speaker has been detected, the middleware will resolve
it as soon as possible. However, the middleware will
not resolve the inconsistency associated with other
non-important speakers because the users do not care
and are willing to sacrifice consistency for better
performance, such as low transmission delay
(inconsistency resolution takes time).

Still, another method to discern the semantics is to
monitor the systems behavior and use feedback control
to modify the middleware’s response. Deployed on the
users’ side, these monitors track the users’ response to
these inconsistencies and increase the inconsistencies
priority when users indicate their dissatisfaction with
them.

Several schemes can be used to resolve the
inconsistency. The middleware can, for example, send
the correct version to all the replicas, if the
inconsistency can be resolved in the middleware level.
Otherwise, the middleware may flag an inconsistency
alert to the system administrator for human
intervention [8]. Therefore, inconsistency resolution
can be made versatile to different applications.

7. Related Work

TACT [13] recognizes the inherent tradeoff
between consistency level and performance, as well as
the rich semantics of this trade-off, It proposed a set of
parameters to measure the consistency level of
applications and developed algorithms to bound the
inconsistency within a certain level. However, it is still
in realm of inconsistency avoidance while this paper
promotes an inconsistency detection framework.

DENO [2] is a decentralized, peer-to-peer object-
replication system for a loosely connected
environment. The novelty of DENO lies in its
combination of weighted voting and pair-wise,

epidemic information flow. While DENO improves
voting scheme to provide weak consistency, we believe
that it is still very hard for voting scheme to deal with
the dynamism and security issues in a large-scale
network. We believe that probabilistic schemes, such
as the two-layer inconsistency detection mechanism
proposed in this paper, are more scalable and robust.

Lpbcast [5] is a gossip based broadcast protocol and
a similar scheme is deployed in the bottom layer of our
two-layer inconsistency detection framework as a
backup protocol. The difference between lpbcast and
our work is that lpbcast is a pure gossip based
broadcast protocol while ours is designed to further
minimize the delay of inconsistency detection.

Quorum system [9] is a widely deployed scheme to
maintain consistency in distributed systems.
Depending on the structure of the system, a certain
number of nodes can organize a quorum which
promises that no others can organize another quorum at
the same time. However, the quorum could possible
fail in the presence of node failures. Unlike quorum
system, our two-layer inconsistency detection
framework is robust because if a node fails, the
messages can always be route the update to other
candidates, in both layers.

8. Conclusions and Future Work

We presented an inconsistency detection
framework, as an alternative to inconsistency
avoidance, in Internet-scale distributed systems. The
detailed design and evaluation of a two-layer
inconsistency detection module was elaborated and
evaluated by both analysis and simulations. Results
show that, with this inconsistency detection module,
most inconsistency of hot files can be detected in the
top layer with a high possibility. Further, this
framework is bandwidth efficient and with low
maintenance cost.

In the future, we plan to use this inconsistency
detection framework to support consistency-conscious
applications, such as e-business applications.

Acknowledgements

 This work is partially supported by the National
Basic Research Program of China (973 Program) under
Grant No. 2004CB318201.

References

[1] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. Splitstream: High-
bandwidth multicast in cooperative environment. In

Proc. of the SOSP, Bolton Landing, New York, USA,
October 2003.

[2] U. Cetintemel, P. J. Keleher, B. Bhattacharjee, and M.
J. Franklin, Deno: A Decentralized, Peer-to-Peer
Object-Replication System for Weakly-Connected
Environments, IEEE Transactions on Computers, 52(7),
2003

[3] T. Chang, G. Popsecu, and C. Codella, Scalable and
Efficient Update Dissemination for Interactive
Distributed Applications, In Proc of the International
Conference of Distributed Computing System (ICDCS),
Viena, Austria, July 2-5, 2002

[4] D. Dullmann, W. Hoschek, J. Jaen-Martinez, B. Segal,
A. Samar, H. Stockinger, and K. Stockinger, Models for
Replica Synchronization and Consistency in Data Grid,
In Proc. of 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC), Aug. 7-9,
pp. 67-75, 2001

[5] P.T. Eugster, R. Guerraoui, S. B. Handurukande, A. M.
Kermarrec, P. Kouznetsov. Lightweight Probabilistic
Broadcast, In Proc of the International Conference on
Dependable Systems and Networks (DSN 2001), July,
2001

[6] James J. Kistler and M. Satyanarayanan, Disconnected
Operation in the Coda File System, ACM Transactions
on Computer Systems, 10(1) pp. 3-25, February 1992

[7] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. Vahdat. Using Random Subsets to Build Scalable
Network Servioces, In Proc. of 4th USENIX Symposium
on Internet Technologies and Systems. March 2003

[8] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen,
Ivy: A Read/Write Peer-to-Peer File System, OSDI
2002

[9] M. Naor, U. Wieder, Scalable and Dynamic Quorum
Systems, In Proc. PODC 2003

[10] D. Parker, G. Popek, G. Rudisin, A. Stoughton, B.
Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, and
C. Kline, Detection of mutual inconsistency in
distributed systems. In IEEE Transactions on Software
Engineering, 9(3), pp. 240-247, 1983

[11] M. Stonebraker, Concurrency Control and Consistency
of Multiple copies of Data in Distributed INGRES,
IEEE Transactions on Software Engineering, 5(3), May
1979

[12] D. B. Terry, M. M. Theimer, K,. Petersen, A. J.
Demers, M. J, Spreitezer, and C. H. Hauser. Managing
Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System, In Proc. of the Fifteenth
ACM SOSP, 1995

[13] H. Yu and A. Vahdat, Design and Evaluation of a
Continuous Consistency Model for Replicated Services,
In. Proc. OSDI 2000

[14] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. In INFOCOMM, San Francisco,
California, 1996.

