
FairOM: Enforcing Proportional Contributions among
Peers in Internet-Scale Distributed Systems

Yijun Lu1, Hong Jiang1, and Dan Feng2

1 Department of Computer Science and Engineering
University of Nebraska –Lincoln, Lincoln, NE 68588, USA

{yijlu,jiang}@cse.u nl.edu
2 Department of Computer Science and Engineering

Huazhong University of Science and Technology, Wuhan, 430074, China
dfeng@hust.edu.cn

Abstract. The viability of overlay multicasting has been established by prev i-
ous research. However, in order to apply overlay multicast to Internet -scale dis-
tributed systems, such as the Grid and Peer-to-Peer systems, the issue of effec-
tively enforcing fairness among peers so as to optimize overall performance
remains as a challenge. This paper argues that simply appl ying a multiple -tree
scheme does not provide sufficient fairness, in terms of performance. Instead,
we believe that a better way to define fairness, for performance’s sake, is to fa c-
tor in peers’ proportional contributions as it provides the opportunity to support
many simultaneous multicasting sessions. This paper then presents a protocol,
called FairOM (Fair Overlay Multicast), to enforce proportional co ntributions
among peers in Internet -scale distributed system s. By exploiting the notion of
staged spare capacity group and deploying a two -phase multicast fo rest con-
struction process, FairOM enforces proportional contribution s among peers,
which enables more simultaneous multicasting sessions and alleviat es potential
hot-spots. The simulation results of a l arge multicast group with 1000 members
show that FairOM achieves the goal of enforcing proportional contribution s
among peers and does not overwhelm the peers, including the multicast source.
FairOM also achieves low delay penalty for peers and high path d iversity.

1 Introduction

In Internet-scale distributed systems, such as the Grid and Peer -to-Peer (P2P) comput-
ing, reliable and efficient data dissemination plays a very important role, with exa m-
ples ranging from the massive data deli very in data Grid to multimedia delivery in
P2P environment. In these systems, overlay multicasting [4, 5, 11] is a better choice
than IP level multicast for several reasons. First, overlay multicasting does not need
the support from the network infrastructure. Second, it can be configured on top of the
application level, thus providing opportunities to capture the semantics of the applic a-
tions. And finally, it is easy to use and configure in practice.

The biggest challenge in applying overlay multicasting to an Internet-scale envi-
ronment, such as the Grid and P2P environment, is to meet the peers’ requirement of
fairness [3], which stems from the equal status of peers in the distri buted systems (in

Grid environment, different sites can be treated as equal status peers; in P2P environ-
ment, each node can be treated as a peer). In these environments, no one is supposed
to contribute dramatically more or less than others.

The conventional single-multicast-tree structure does not satisfy the fairness r e-
quirement as the leaves in the tree have no contribution to the multicast effort while
the interior nodes contribute all the forwarding bandwidth [3]. To tackle this pro blem,
the notion of multicast forest, or multiple multicast -trees, has been explored in several
studies [3, 9]. A good example of these systems is SplitStream [3], which builds a
multicast forest and ensures that each peer only serves as an interior node once (as a
contributor in one tree) on average and is a receiver in all other trees.

In this paper we revisit the issue of fairness requirement by asking the question of
how to properly define fairness so as to increase overall performance. Even if we have
a multicast forest in which each peer co ntributes some (by being an interior node in
one multicast tree, for example) and no peer is overwhelmed, is there any chance that
the multicast is still unfair in the sense that it results in relatively poor performance?

We argue that simply letting each peer contribute once and satisfying each peer’s
outgoing bandwidth constraint is not enough for enforcing fairness for the sake of
performance. A better way to define fairness , we believe, is to enforce that peers’
contributions are proportional to their total available outgoing bandwidths , which is
analogous to taxation or donation. In taxation or donation, it is desirable for people to
give the same percentage of their available capital as their contributions to the society
(here, we assume all the people are in the same tax bracket).

Performance-wise, enforcing proportional contribution provides an environment to
support multiple simultaneous multicasting sessions that may not otherwise be
achievable by simply asking every peer to contribute arbitrarily. Consider the follow-
ing example in which peers A and B are both going to multicast a movie and each
multicast will span all the peers in the network. Suppose that A builds its multicast
forest first and one peer, C, is assigned to contribute 90% of its outgoing bandwidth to
it. Then when B tries to establish its mult icast forest, chances are that C just does not
have enough bandwidth to support it because it has contributed too much to the first
multicast session. In this case, the construction of a forest for B becomes either infea-
sible or, barely feasible by saturating C’s outgoing bandwidth and making C a hot -
spot/bottleneck. In this case, if we instead let each peer contribute roughly the same
percentage of its outgoing bandwidth, say 20%, then C has a chance to support the
two multicasting sessions simultaneously.

Moreover, as alluded to in the previous paragraph, enforcing proportional contr i-
bution among peers can reduce the probability of hot-spots. Using the same example,
if multiple multicasting sessions are forced upon C when it barely has enough ban d-
width, then C will become a hot-spot of the system and packets will be d elayed, or
worse yet, lost.

We present a protocol, called FairOM (Fair Overly Multicast) , to enforce propor-
tional contributions among peers through a two -phase forest construction process,
with the assumption that all peers play by the rules. The case where peers may not be
trustworthy is beyond the scope of this paper and will not be considered any further
except for a brief discussion in Section 3.7.

The performance of FairOM is evaluated in a large s ize multicast group with 1,000
members through simulations. Simulation results demonstrate that FairOM achieves

the goal of enforcing proportional contribution s among peers, does not overwhelm
peers, including the source, has low delay pe nalty, and achieves high path diversity.

Before we move on to the next section, it is noteworthy that, in terms of ban dwidth
constraint, we only concern about the outgoing bandwidth for two reasons. First,
current broadband technologies, such as ADSL, have limited outgoing bandwidth and
larger incoming bandwidth. Second, each peer should have enough incoming ban d-
width to accept all the stripes otherwise it cannot benefit from the multicast sy stem.

We also recognize that, if the network bandwidth is so constrained that all t he
bandwidth is needed, there is no need to concern about the proportionality. However,
with the proliferation of wireless -enabled laptops and high-speed Internet connec-
tions, we believe that there will be certain amount of excessive bandwidth available
within Internet-scale distributed systems in the near future that should be effectively
exploited to benefit the overall performance .

The rest of the paper is organized as follows. Section 2 formulates the problem and
section 3 discusses the design of FairO M. The evaluation of FairOM is discussed in
section 4 and related work is discussed in section 5. Finally, section 6 concludes this
paper and discusses future work.

2 Problem Formulation

We represent each peer’s total outgoing bandwidth as its total cont ribution capacity.
Because of the design goal of minimizing the standard deviation of contribution pr o-
portions, we make the following three assumptions:

• Each data package to be multicast is encoded into n equal sized stripes and each
peer has enough incoming bandwidth to absorb all the n stripes. This is essential
to successfully build a multicast forest because otherwise the receiver cannot r e-
ceive all the stripes no matter what mu lticast scheme is used.

• The total available outgoing bandwidth of peers is sufficient to build a forest to
multicast data to the peers. Again, this assumption is to make the forest building
feasible.

• There is excessive outgoing bandwidth in this multicast group. While this a s-
sumption is not essential to the correctness of the p rotocol, it provides the oppor-
tunity to show its advantages. If there is little excessive bandwidth left, all peers
will have to contribute almost all their capacities, thus reducing to a special case
of this protocol and making it identical or similar to other schemes.

Before we state our design goal, let us first formally define several terms with the
assumption that there are a total of n peers in this multicast group.

• Ti: Total available outgoing bandwidth for each peer i, or, the maximum number
of stripes it is capable of forwarding.

• Ci: The forwarding load of peer i, in term of the number of stripes it is assigned
to handle.

• Ri: defined as Ci/Ti, is the contribution ratio of peer i.
• StdR: The standard deviation of the contribution ratios (R) of all the n peers. That

is,

2

1
)(1 ∑

=

−=
n

i
i RR

n
StdR

A complete multicast forest must satisfy the following two conditions:

• Multicast satisfaction: each peer should receive all the n stripes.
• Bandwidth limitation: the forwarding load of each peer i should be less than or

equal to its total available outgoing bandwidth, or Ci ≤ Ti.
The design goal is to minimize the standard deviation of all the peers’ co ntribution

ratio StdR in a complete multicast forest.

Goal: minimize StdR.

3 Design of FairOM

The basic idea of FairOM is to build a multicast forest in two phases. In the first
phase, the peers join the multicast group and establish the neighborhood by a pair -
wise neighborhood establishment procedure and use this neighborhood information to
build an initial multicast forest that may not be complete. In the second phase, a peer
contacts the source to ask for any missing stripes to make the forest complete.

FairOM assumes that a new peer knows at least one other member in the current
multicast group when it joins, implying that FairOM does not directly deal with boo t-
strap mechanism. Further, FairOM assumes that all the peers know when the forest
construction starts and the number of trees they need to join. In practice, the source
and the peers can exchange this information through web page announc ements or
emails. As well, a peer can learn this information from its neighbors.

3.1 Establishment of Neighborhood

After joining the multicast group, a new peer will eventually establish its neighbor list
by running a periodical neighborhood establishment procedure. In each round of this
procedure, the peer contacts its neighbors (there is at least one bootstrap neighbor by
assumption) and checks this neighbor’s neighbor list. If its neighbor’s neighbors do
not appear in this peer’s own neighbor list, it acts as follows. When its neighbor list is
not full (each peer defines its length of neighbor list), it puts the new peers into its
neighbor list. Otherwise, it compares the new peers with the ones a lready in its
neighbor list according to the routing latency between the peers and itself. If a new
peer has smaller latency, this peer replaces a current neighbor by the new one with a
certain probability (currently we use 0.8) to prevent hot spot. If this peer adds a new
peer to its neighbor list, it sends a notice to this new peer about this. While not imm e-
diately clear here, the purpose of this operation will become obvious later when we
discuss the staged quota relaxation next.

In this way, each peer will establish its ow n neighbor list after a certain number of
rounds. After that, this periodical process servers as a way to adjust peers ’ neighbor
lists and maintain the neighborhood among peers.

3.2 Staged Spare Capacity Group

Staged spare capacity group is a key data st ructure in FairOM to enforce propo rtional
contributions. Suppose that the spare capacity group has five stages, where each stage
represents a percentage range of the capacity (e.g., stage 1 represents [0%, 20%],
stage 2 (20, -40%], etc), then the source wi ll put each of the registered peers into an
appropriate stage. To illustrate this concept, we consider a simple example as illu s-
trated in Figure 1.

In Figure 1, suppose that peer A has a total outgoing bandwidth of 20 (i.e., it can
forward 20 stripes of data) and has already contributed 3 units of the total, then its
current contribution is 15% (3/20). Because A’s contribution is less or equal to 20%, it
is put into stage 1. B is put into stage 2 because its contribution is in the range (20%,
40%]. Follow the same criteria, C and D are put in stage 1 and 5, respectively.

It is worth noting that the source maintains an independent staged capacity group
for each stripe. So if a peer has contribution for more than one stripe, it needs to regi s-
ter the contribution information for each stripe independently.

Figure 1. Layout of the staged spare capacity group for A, B, C and D while
the contributions of them are 15%, 25%, 10% and 82%, respectively.

3.3 Phase I: Initial Forest Construction

Now we illustrate the first phase of the multicast forest construction among all the
peers. The purpose of the initial forest construction is by no means to build a co m-
plete forest. Instead, it servers as a good start and provides a skeleton on which the
second phase can improve. Because this is a quota -driven system, the system has a
predefined initial quota. Each peer is willing to contribute as much as it can within
this predefined quota.

More specifically, the source first sends all the stripes out , which are then for-
warded to different neighbors to achieve path diversity. For each peer that receives a
stripe, it forwards the stripe to as many neighbors as it can within the predefined
quota. If a peer receives multiple transmissions of the same stripe, it picks one and
rejects others. At this stage, let us assume that a peer picks the parent that notices it
first.

When a multicast relationship between a parent and a child has been established
(the parent picks the child and the child accepts it), the parent and the child both re-
cord this relationship locally. Then both of them start to run a heartbeat checking
procedure to detect any failure.

For each peer, when it receives a stripe and has gotten all the response s from the
children candidates it picked, it calculates its contribution and registers it to the staged
spare capacity group by sending a message to the multicast source.

There is no clear line between the first phase and the second one in a global scale.
Instead, it is each peer’s own decision on when to start th e second phase that we de-
scribe next.

3.4 Phase II: Making the Forest Complete

After the forest building process starts, each peer checks with those peers that treat it
as a neighbor (recall that a peer sends a notice to its neighbor after the neighbor i s
added to its neighbor list in the establishment of neighborhood procedure). If all peers
it contacts have already gotten some stripes and did not choose it as a child in the
initial forest construction, it will seek help from the source. Moreover, a peer contacts
the source anyway if a predefined deadline has passed.

In the message it sends to the source, the peer indicates the number of times it has
requested for spare capacity, starting with 1 (the first time). When the source r eceives
the message (with number 1), it only looks for parents for this peer in the first stage of
the spare capacity group by randomly picking one eligible parent which has this
stripe. Then it calculates what the new contribution for the parent would be. If the
new contribution ratio is beyond the quota limit of this stage (20% for the first stage),
the parent’s record is moved from the current stage to the next higher one (stage 2 in
this case).

If a parent is found, the parent will receive the adoption request of a potential child
from the source and then send a request to the potential child that needs to be adopted.
Thus the peer with missing stripes can get what it wants.
 If the source cannot find a parent in this stage, the peer with missing stripes waits a
predefined period of time before it starts the next round of request. When the next
round starts, the peer sends another message that has a request number of 2, which
tells the source to search for an adoption up to stage 2. However, the source still starts
to look for adoption from the first stage in a hope to find some new spare c apacity
from smaller contributors. Thus each round pr ovides opportunities for the source to
find a peer with smaller contribution ratio to adopt. By following this protocol, the
source relaxes the quota gradually and finally builds a complete forest in which every
peer is in all trees. A pseudo code of this process is illustrated in Figure 2.

We need to mention that the delay between each round of request s for spare capac-
ity and the way the source looks for adoption (always starts from the first stages, and
climbs to higher stages gradually) are essential to the effectiveness of FairOM to
enforce proportional contributions because they provide an opportunity to utilize
resource from newly joined smaller contributors.

Figure 2. Pseudo code for making the forest complete

3.5 Incorporating Multicast Delay Information into Consideration

The algorithm discussed so far does not consider multicast delay when it perfo rms the
forest construction. In this section, we try to minimize the multicast delay of the fo rest
by incorporating the delay information into each of the two phases of the forest con-
struction. Here, the delay perceived by a peer in regard to a particular stripe is defined
as the time delay for it to receive the stripe from the source. Performance -wise, the
shorter the delay, the better the performance is perceived by this peer.

In the initial forest construction process, each peer sends its delay information
along with the message it sen ds to its neighbors. When a peer receives multiple tran s-
missions of the same stripe, it picks the one with the smallest delay and drops others.
Because the dropping process is based on delay, it will not create cycles as pr oved
informally by following example.

Consider three peers A, B and C. Suppose that Peer A chooses B as parent, B
chooses C as parent, and C chooses A as parent. In this case, the delay Da of A is lar-
ger than delay Db of B, that is, Da > Db. Similarly, we have Db > Dc and Dc > Da,
implying that Da > Da, which is impossible. Thus the scheme to incorporate delay
information is cycle free.

In the second phase of the forest construction, when a peer request s missing stripes
from the source, the source chooses s everal parents for this child (we current use three
parents) and the child chooses the parent that gives it the smallest delay.

Peer:
 If (current > deadline && has not received all stripes) {
 num = 1;
 while (num_of_try <= 5) {
 send (source,id of all missing stripe, num);
 wait(waiting_time);
 if(still has mis sing stripes) {
 num++;
 } else {
 return success;
 }}
 return fail;
 }
Source:
 While (1) {
 recv(peer, ids of missing strips, num);
 foreach stripe in missing stripes {
 // find adoption from stage <= num;
 parent = fi nd_adoption_up_to(num);
 if (parent != NULL) {
 send(parent, peer, id of missing strip);
 if (parent.contribution > limit of the current stage)
 move parent to the next higher stage
 }}}

3.6 Handling Peer Join and Departure

When a peer joins the multicast group after the forest has been built, it first esta b-
lishes its neighbor list by following the neighborhood establishment procedure. Then
it seeks for adoption from its neighbors . Upon receiving this request, a neighbor
grants the request if this adoption will still keep itself in the same stage in the spare
capacity group. Otherwise, it rejects this request. If no neighbor is willing to adopt the
new peer, it contacts the source for spare capacity.

In the case of peer departure, we differentiate two kinds of departures: decent d e-
partures and failures. For a decent departure, the departing peer noti fies its multicast
parents and children so that the parents can reclaim their contribution and its chi ldren
can start seeking for adoptions by first contacting their neighbors and then contacting
the source if none of their neighbors grant their requests . In the case of a failure, this
failure will eventually be discovered by the heartbeat checking procedure which is run
between each pair of multicast parent and child. After the failure is discovered, the
failed peer’s parents and children can react accordingly, similar to the case of a decent
departure.

3.7 Discussions

Stress Put on the Source: In FairOM, the source is leveraged to manage the spare
capacity group. One concern of this is the stress put on the source. W e have consid-
ered two possible solutions to reduce such stress, but neither of them is completely
satisfactory.

The first solution uses a source pool that includes several servers to share and dis-
tribute the burden of the source. While this scheme is simple, it assumes that the other
peers in the pool are as trustable and stable as the source, which is not usually the case
in a dynamic environment such as P2P. The second solution assigns several peers the
same responsibility and uses Byzantine protocol to m ake the final decision and pre-
vent cheating. However, this design complicates the system substantially.

The Security Issue: With the assumption that the peers are trustworthy, FairOM
performs well and finally builds a fair-sharing multicast forest. However , when some
peers do not work within the rule and cheat on their contributions, the multicast forest
would not be fair any more. To prevent this from happening, distributed audit mecha-
nism, as proposed by Ngan et. al [8], can be deployed to detect cheating and remove
the peer that cheats from the multicast group.

4 Performance Evaluation

In order to best evaluate the system performance, we choose the Transit -Stub model
[10] to simulate a physical network. The Transit -Stub model generates 1452 routers
that are arranged hierarchically, like the current Internet structure. Then we generate
1,000 end nodes and attach them to routers randomly with uniform distribution. Fur-
ther, our simulator models peers’ bandwidths by assigning each peer a nu mber that
refers to the maximum number of stripes it can forward, which serves as the peer’s

total outgoing bandwidth. For all the simulations , each peer’s total outgoing band-
width is randomly chosen between 10 and 20.

4.1 Effectiveness of Enforcing Proportional Contribut ions

We measure the effectiveness of enforcing proportional contribution by StdR, the
standard deviation of the peers’ contribution s. In this simulation, we run three con-
figurations with numbers of stripes being 2, 4 and 8, respectively.

In all the simulations, the algorithm satisfies the requirement to build a complete
forest and satisfies all peers’ bandwidth constraint s. Then the mean value and StdR
are calculated and summarized in Table 1. This result clearly shows that FairOM
performs very well when we change the number of stripes from 2 to 8.

Table 1. Mean and Std of contribution ratios

Statistics FairOM (2) FairOM (4) FairOM (8)

Mean 0.131 0.257 0.521
StdR 0.047 0.090 0.106

4.2 Improvement on the feasibility for multiple simultaneous multicasting
sessions

In this section, we qualitatively argue the effectiveness of FairOM in terms of impro v-
ing the feasibility for multiple simultaneous multicasting sessions as follows.

Because we assume that each multicast session needs to span the whole networ k,
the feasibility of scheduling multicasting session is de termined by the weakest peer in
the network. Here, the weakest peer refers to the peer that has the least available ou t-
going bandwidth when a new multicasting session starts. When its available ou tgoing
bandwidth is not enough to support one stripe, scheduling of that multicasting session
becomes infeasible.

We consider two schemes, the SplitStream -like systems, and FairOM. In Spli t-
Stream-like systems, when the weakest peer contributes more in one session, it can
render the scheduling for additional sessions infeasible. While in FairOM, it e nforces
that when each new multicast session is scheduled, the contribution ratio of each peer
increase proportionally, which implies that the more powerful peers will contribute
more to support the mult icast, thus leaving enough bandwidth at the small peers’ side
for them to support more simultaneous sessions.

4.3 Forest Construction Overhead

To evaluate the overhead of the forest construction in FairOM, we us e the number of
messages received by each peer during the forest construction phase. In the relevant
literature, this metric is also denoted as “node stress”.

Figure 3. Cumulative distribution of delay for peers

In a typical run, all the peers, except t he source, have node stress less than 300.

The node stress for the source is 6585. While 6585 appears extremely high compared
with other nodes’ stress, it is amortized during the whole forest construction and does
not induce much bandwidth cost for the sou rce as shown in the following anal ysis.

In that particular run, the time of the forest construction was 192 seconds. Let us
conservatively assume that each packet is of size 1KB, which is much larger than is
really needed for the purpose of forest construc tion according to our experience.
These 6585 messages amount to a total size of 6.6MB and receiving these packets in
192 seconds requires a bandwidth of 34.4KB. There is even less data sent out from
the source during the forest construction phase (because certain messages, such as
spare capacity registration, do not require response but account for a large portion of
total messages received by the source). So this should not be a burden for a media
server that usually has high-speed Internet connection.

4.4. Multicast Performance

Figure 3 shows the cumulative distribution of peers’ delay in a typical run with 4
stripes. In this figure, a point (x, y) indicates that a fraction y of all the peers have
delay less than or equal to x. In this simulation, all peers receive all the stripes within
8 seconds and the average delay is 4.1 seconds. This clearly shows the effe ctiveness
of incorporating multicast delay information into the forest construction pro cess.

4.5. Path Diversity of the Multicast Forest

Path diversity refers to the diversity between the paths from each node to the mult i-
cast source. Ideally, the paths should be disjoint with each other so that one peer’s
failure only causes the loss of one stripe for the receiver. While FairOM mainly uses
randomization to achieve diversity, the enforced delay between quota relaxation r e-
quests also contributes to the path diversity because it provides opportunities for a
receiver to get stripes from different parents.

In the simulation, we randomly fail one peer (not source, of course) in the mult i-
cast group. We run the simulation with two configurations. First, we run FairOM with
four stripes and then FairOM with eight stripes. The result is shown in Table 2. This
result validates the effectiveness of the path diversit y of FairOM, which successfully
builds such a forest where one peer’s failure only costs the loss of a small number of
stripes.

Table 2. Max, mean and median # of lost stripes with a single node fai lure

Statistics FairOM (4) FairOM (8)

Max 2 3
Mean 1.02 1.66

Median 1 1

5. Related Work

Seminal work such as Overcast [5] and End System Multicast (ESM) [4] builds a
single multicast tree for a multicast source. While these systems proved the feasibi lity
and validity of overlay multicast, the asymmetric n ature of tree implies that a single -
tree approach can not satisfy P2P’s requirement of fairness as the leaves in a tree have
no contribution to the multicast transmissions at all.

CoopNet [7, 9] uses a centralized mechanism to build multiple trees. To enfo rce
fairness, CoopNet uses randomization in the tree construction process. There are two
main differences between CoopNet and FairOM. First, FairOM utilizes both dece n-
tralized initial forest construction and centralized forest improvement while CoopNet
is based on a purely centralized algorithm. Second, there is no mechanism in CoopNet
to enforce proportional contributions among peers .

SplitStream [3] builds a multicast forest in which each peer only serves as an int e-
rior node once, and serves as leaves in all other trees, so is a fair system in the sense
that each peer contributes once and only once. The main difference between FairOM
and SplitStream lies in the way fairness is defined. Instead of defining fai rness by
letting each peer that contributes share certain forwarding load, FairOM defines fai r-
ness as peers’ contributions being proportional to their total available bandwidths.
SplitStream also has the concept of spare capacity and uses it as a backup mech anism
to build a complete forest; however, the spare capacity group in FairOM is staged and
plays a central role to enforce propo rtional contribution.

Bullet [6] is a representative of mesh based multicast protocol , which builds an
overlay mesh to disseminate data. Comparing with a single -tree based multicast, Bul-
let has the benefit of removing forwarding bottleneck, which helps achieve high
bandwidth. The philosophy behind Bullet is to exploit exce ssive bandwidth while the
primary design goal of FairOM is to enforce fair contrib ution among peers.

Recently, Bharambe et. al [2] present the impact of heterogeneous bandwidth to
DHT-based multicast protocols, such as Scribe, the origin of SplitStream. However,
their work is based on DHT-based multicast while our s on an unstructured mult icast.

6. Conclusion and Future Work

This paper presents the design and evaluation of FairOM, a fair overlay multicasting
scheme for Internet-scale distributed systems. Through a two -phase forest construc-
tion process, FairOM enforces proportional co ntribution among peers. Simulation
results show that FairOM achieve s this design goal and puts low node stress to all the
peers. Furthermore, it achieves path diversity which makes it robust to node failure.

In the future, we plan to investigate mechanism to reduce the source’s hea vy duty
and investigate the security issues. Finally, we plan to make this forest adaptive to the
dynamic changes of bandwidth after it is initially built.

Acknowledgements

This work is partially supported by the National Basic Research Program of China
(973 Program) under Grant No. 2004CB318201.

References

[1] Planet-Lab, http://www.planet -lab.org
[2] R. Bharambe, S. G. Rao, V. N.Padmanabhan, S. Seshan, and H. Zhang. The impact of

heterogeneous bandwidth constraints on DHT -based multicast protocols, In IPTPS’05,
2005

[3] M. Castro, P. Druschel, A. -M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Spli t-
stream: High-bandwidth multicast in cooperative environment. In Proc. of the SOSP , Bol-
ton Landing, New York, USA, October 2003.

[4] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast. IEEE
Journal on Selected Areas in Communication (JSAC), Special Issue on Networking Su p-
port for Multicast, 20(8), 2002.

[5] J. Jannotti, D. Gifford, K. Johnson, and M. Kaashoek. Overcast: Reliable multicasting
with an overlay network. In Proc. OSDI, San Diego, CA, 2000.

[6] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: Hight band -width data dis-
semination using an overlay mesh. In Proc. of the ACM Symposium on Operating System
Principles (SOSP), October 2003.

[7] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Supporting heterogeneity and conge s-
tion control in peer -to-peer multicast streaming. In IPTPS, 2004.

[8] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair sharing of peer -to-peer re-
sources. In Proc of IP TPS, 2003

[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing strea m-
ing media content using cooperative networking. In NOSSDAV'02 , Miami, Florida, USA,
May 2002.

[10] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an inter network. In
INFOCOMM , San Francisco, California, 1996.

[11] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architecture for
scalable and fault -tolerant wide-area data dissemination. In NOSSDAV'2001 , June 2001.

